yuzu-mainline/src/video_core/engines/maxwell_3d.cpp

531 lines
22 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <cstring>
#include "common/assert.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/memory.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
#include "video_core/textures/texture.h"
namespace Tegra::Engines {
/// First register id that is actually a Macro call.
constexpr u32 MacroRegistersStart = 0xE00;
Maxwell3D::Maxwell3D(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager)
: memory_manager(memory_manager), rasterizer{rasterizer}, macro_interpreter(*this) {
InitializeRegisterDefaults();
}
void Maxwell3D::InitializeRegisterDefaults() {
// Initializes registers to their default values - what games expect them to be at boot. This is
// for certain registers that may not be explicitly set by games.
// Reset all registers to zero
std::memset(&regs, 0, sizeof(regs));
// Depth range near/far is not always set, but is expected to be the default 0.0f, 1.0f. This is
// needed for ARMS.
for (std::size_t viewport{}; viewport < Regs::NumViewports; ++viewport) {
2018-11-13 23:13:16 +00:00
regs.viewports[viewport].depth_range_near = 0.0f;
regs.viewports[viewport].depth_range_far = 1.0f;
}
// Doom and Bomberman seems to use the uninitialized registers and just enable blend
// so initialize blend registers with sane values
regs.blend.equation_rgb = Regs::Blend::Equation::Add;
regs.blend.factor_source_rgb = Regs::Blend::Factor::One;
regs.blend.factor_dest_rgb = Regs::Blend::Factor::Zero;
regs.blend.equation_a = Regs::Blend::Equation::Add;
regs.blend.factor_source_a = Regs::Blend::Factor::One;
regs.blend.factor_dest_a = Regs::Blend::Factor::Zero;
for (std::size_t blend_index = 0; blend_index < Regs::NumRenderTargets; blend_index++) {
regs.independent_blend[blend_index].equation_rgb = Regs::Blend::Equation::Add;
regs.independent_blend[blend_index].factor_source_rgb = Regs::Blend::Factor::One;
regs.independent_blend[blend_index].factor_dest_rgb = Regs::Blend::Factor::Zero;
regs.independent_blend[blend_index].equation_a = Regs::Blend::Equation::Add;
regs.independent_blend[blend_index].factor_source_a = Regs::Blend::Factor::One;
regs.independent_blend[blend_index].factor_dest_a = Regs::Blend::Factor::Zero;
}
regs.stencil_front_op_fail = Regs::StencilOp::Keep;
regs.stencil_front_op_zfail = Regs::StencilOp::Keep;
regs.stencil_front_op_zpass = Regs::StencilOp::Keep;
regs.stencil_front_func_func = Regs::ComparisonOp::Always;
regs.stencil_front_func_mask = 0xFFFFFFFF;
regs.stencil_front_mask = 0xFFFFFFFF;
regs.stencil_two_side_enable = 1;
regs.stencil_back_op_fail = Regs::StencilOp::Keep;
regs.stencil_back_op_zfail = Regs::StencilOp::Keep;
regs.stencil_back_op_zpass = Regs::StencilOp::Keep;
regs.stencil_back_func_func = Regs::ComparisonOp::Always;
regs.stencil_back_func_mask = 0xFFFFFFFF;
regs.stencil_back_mask = 0xFFFFFFFF;
// TODO(Rodrigo): Most games do not set a point size. I think this is a case of a
// register carrying a default value. Assume it's OpenGL's default (1).
regs.point_size = 1.0f;
// TODO(bunnei): Some games do not initialize the color masks (e.g. Sonic Mania). Assuming a
// default of enabled fixes rendering here.
for (std::size_t color_mask = 0; color_mask < Regs::NumRenderTargets; color_mask++) {
regs.color_mask[color_mask].R.Assign(1);
regs.color_mask[color_mask].G.Assign(1);
regs.color_mask[color_mask].B.Assign(1);
regs.color_mask[color_mask].A.Assign(1);
}
// Commercial games seem to assume this value is enabled and nouveau sets this value manually.
regs.rt_separate_frag_data = 1;
}
void Maxwell3D::CallMacroMethod(u32 method, std::vector<u32> parameters) {
// Reset the current macro.
executing_macro = 0;
// Lookup the macro offset
const u32 entry{(method - MacroRegistersStart) >> 1};
const auto& search{macro_offsets.find(entry)};
if (search == macro_offsets.end()) {
LOG_CRITICAL(HW_GPU, "macro not found for method 0x{:X}!", method);
UNREACHABLE();
return;
}
// Execute the current macro.
macro_interpreter.Execute(search->second, std::move(parameters));
}
void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) {
auto debug_context = Core::System::GetInstance().GetGPUDebugContext();
// It is an error to write to a register other than the current macro's ARG register before it
// has finished execution.
if (executing_macro != 0) {
ASSERT(method_call.method == executing_macro + 1);
}
// Methods after 0xE00 are special, they're actually triggers for some microcode that was
// uploaded to the GPU during initialization.
if (method_call.method >= MacroRegistersStart) {
// We're trying to execute a macro
if (executing_macro == 0) {
// A macro call must begin by writing the macro method's register, not its argument.
ASSERT_MSG((method_call.method % 2) == 0,
"Can't start macro execution by writing to the ARGS register");
executing_macro = method_call.method;
}
macro_params.push_back(method_call.argument);
// Call the macro when there are no more parameters in the command buffer
if (method_call.IsLastCall()) {
CallMacroMethod(executing_macro, std::move(macro_params));
}
return;
}
ASSERT_MSG(method_call.method < Regs::NUM_REGS,
"Invalid Maxwell3D register, increase the size of the Regs structure");
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandLoaded, nullptr);
}
if (regs.reg_array[method_call.method] != method_call.argument) {
regs.reg_array[method_call.method] = method_call.argument;
// Color buffers
constexpr u32 first_rt_reg = MAXWELL3D_REG_INDEX(rt);
constexpr u32 registers_per_rt = sizeof(regs.rt[0]) / sizeof(u32);
if (method_call.method >= first_rt_reg &&
method_call.method < first_rt_reg + registers_per_rt * Regs::NumRenderTargets) {
const std::size_t rt_index = (method_call.method - first_rt_reg) / registers_per_rt;
dirty_flags.color_buffer |= 1u << static_cast<u32>(rt_index);
}
// Zeta buffer
constexpr u32 registers_in_zeta = sizeof(regs.zeta) / sizeof(u32);
if (method_call.method == MAXWELL3D_REG_INDEX(zeta_enable) ||
method_call.method == MAXWELL3D_REG_INDEX(zeta_width) ||
method_call.method == MAXWELL3D_REG_INDEX(zeta_height) ||
(method_call.method >= MAXWELL3D_REG_INDEX(zeta) &&
method_call.method < MAXWELL3D_REG_INDEX(zeta) + registers_in_zeta)) {
dirty_flags.zeta_buffer = true;
}
// Shader
constexpr u32 shader_registers_count =
sizeof(regs.shader_config[0]) * Regs::MaxShaderProgram / sizeof(u32);
if (method_call.method >= MAXWELL3D_REG_INDEX(shader_config[0]) &&
method_call.method < MAXWELL3D_REG_INDEX(shader_config[0]) + shader_registers_count) {
dirty_flags.shaders = true;
}
// Vertex format
if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_attrib_format) &&
method_call.method <
MAXWELL3D_REG_INDEX(vertex_attrib_format) + regs.vertex_attrib_format.size()) {
dirty_flags.vertex_attrib_format = true;
}
// Vertex buffer
if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_array) &&
method_call.method < MAXWELL3D_REG_INDEX(vertex_array) + 4 * 32) {
dirty_flags.vertex_array |=
1u << ((method_call.method - MAXWELL3D_REG_INDEX(vertex_array)) >> 2);
} else if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_array_limit) &&
method_call.method < MAXWELL3D_REG_INDEX(vertex_array_limit) + 2 * 32) {
dirty_flags.vertex_array |=
1u << ((method_call.method - MAXWELL3D_REG_INDEX(vertex_array_limit)) >> 1);
} else if (method_call.method >= MAXWELL3D_REG_INDEX(instanced_arrays) &&
method_call.method < MAXWELL3D_REG_INDEX(instanced_arrays) + 32) {
dirty_flags.vertex_array |=
1u << (method_call.method - MAXWELL3D_REG_INDEX(instanced_arrays));
}
}
switch (method_call.method) {
case MAXWELL3D_REG_INDEX(macros.data): {
ProcessMacroUpload(method_call.argument);
break;
}
case MAXWELL3D_REG_INDEX(macros.bind): {
ProcessMacroBind(method_call.argument);
break;
}
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[0]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[1]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[2]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[3]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[4]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[5]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[6]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[7]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[8]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[9]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[10]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[11]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[12]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[13]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[14]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[15]): {
ProcessCBData(method_call.argument);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[0].raw_config): {
ProcessCBBind(Regs::ShaderStage::Vertex);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[1].raw_config): {
ProcessCBBind(Regs::ShaderStage::TesselationControl);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[2].raw_config): {
ProcessCBBind(Regs::ShaderStage::TesselationEval);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[3].raw_config): {
ProcessCBBind(Regs::ShaderStage::Geometry);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[4].raw_config): {
ProcessCBBind(Regs::ShaderStage::Fragment);
break;
}
case MAXWELL3D_REG_INDEX(draw.vertex_end_gl): {
DrawArrays();
break;
}
case MAXWELL3D_REG_INDEX(clear_buffers): {
ProcessClearBuffers();
break;
}
case MAXWELL3D_REG_INDEX(query.query_get): {
ProcessQueryGet();
break;
}
default:
break;
}
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandProcessed, nullptr);
}
}
void Maxwell3D::ProcessMacroUpload(u32 data) {
ASSERT_MSG(regs.macros.upload_address < macro_memory.size(),
"upload_address exceeded macro_memory size!");
macro_memory[regs.macros.upload_address++] = data;
}
void Maxwell3D::ProcessMacroBind(u32 data) {
macro_offsets[regs.macros.entry] = data;
}
void Maxwell3D::ProcessQueryGet() {
GPUVAddr sequence_address = regs.query.QueryAddress();
// Since the sequence address is given as a GPU VAddr, we have to convert it to an application
// VAddr before writing.
const auto address = memory_manager.GpuToCpuAddress(sequence_address);
ASSERT_MSG(address, "Invalid GPU address");
// TODO(Subv): Support the other query units.
ASSERT_MSG(regs.query.query_get.unit == Regs::QueryUnit::Crop,
"Units other than CROP are unimplemented");
u64 result = 0;
// TODO(Subv): Support the other query variables
switch (regs.query.query_get.select) {
case Regs::QuerySelect::Zero:
// This seems to actually write the query sequence to the query address.
result = regs.query.query_sequence;
break;
default:
UNIMPLEMENTED_MSG("Unimplemented query select type {}",
static_cast<u32>(regs.query.query_get.select.Value()));
}
// TODO(Subv): Research and implement how query sync conditions work.
struct LongQueryResult {
u64_le value;
u64_le timestamp;
};
static_assert(sizeof(LongQueryResult) == 16, "LongQueryResult has wrong size");
switch (regs.query.query_get.mode) {
case Regs::QueryMode::Write:
case Regs::QueryMode::Write2: {
u32 sequence = regs.query.query_sequence;
if (regs.query.query_get.short_query) {
// Write the current query sequence to the sequence address.
// TODO(Subv): Find out what happens if you use a long query type but mark it as a short
// query.
Memory::Write32(*address, sequence);
} else {
// Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast
// GPU, this command may actually take a while to complete in real hardware due to GPU
// wait queues.
LongQueryResult query_result{};
query_result.value = result;
// TODO(Subv): Generate a real GPU timestamp and write it here instead of CoreTiming
query_result.timestamp = Core::Timing::GetTicks();
Memory::WriteBlock(*address, &query_result, sizeof(query_result));
}
dirty_flags.OnMemoryWrite();
break;
}
default:
UNIMPLEMENTED_MSG("Query mode {} not implemented",
2018-03-19 16:53:35 +00:00
static_cast<u32>(regs.query.query_get.mode.Value()));
}
}
void Maxwell3D::DrawArrays() {
2018-07-02 16:20:50 +00:00
LOG_DEBUG(HW_GPU, "called, topology={}, count={}", static_cast<u32>(regs.draw.topology.Value()),
regs.vertex_buffer.count);
ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?");
auto debug_context = Core::System::GetInstance().GetGPUDebugContext();
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::IncomingPrimitiveBatch, nullptr);
}
// Both instance configuration registers can not be set at the same time.
ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont,
"Illegal combination of instancing parameters");
if (regs.draw.instance_next) {
// Increment the current instance *before* drawing.
state.current_instance += 1;
} else if (!regs.draw.instance_cont) {
// Reset the current instance to 0.
state.current_instance = 0;
}
const bool is_indexed{regs.index_array.count && !regs.vertex_buffer.count};
rasterizer.AccelerateDrawBatch(is_indexed);
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
// TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if
// the game is trying to draw indexed or direct mode. This needs to be verified on HW still -
// it's possible that it is incorrect and that there is some other register used to specify the
// drawing mode.
if (is_indexed) {
regs.index_array.count = 0;
} else {
regs.vertex_buffer.count = 0;
}
}
void Maxwell3D::ProcessCBBind(Regs::ShaderStage stage) {
// Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage.
auto& shader = state.shader_stages[static_cast<std::size_t>(stage)];
auto& bind_data = regs.cb_bind[static_cast<std::size_t>(stage)];
auto& buffer = shader.const_buffers[bind_data.index];
ASSERT(bind_data.index < Regs::MaxConstBuffers);
buffer.enabled = bind_data.valid.Value() != 0;
buffer.index = bind_data.index;
buffer.address = regs.const_buffer.BufferAddress();
buffer.size = regs.const_buffer.cb_size;
}
void Maxwell3D::ProcessCBData(u32 value) {
// Write the input value to the current const buffer at the current position.
const GPUVAddr buffer_address = regs.const_buffer.BufferAddress();
ASSERT(buffer_address != 0);
// Don't allow writing past the end of the buffer.
ASSERT(regs.const_buffer.cb_pos + sizeof(u32) <= regs.const_buffer.cb_size);
const auto address = memory_manager.GpuToCpuAddress(buffer_address + regs.const_buffer.cb_pos);
ASSERT_MSG(address, "Invalid GPU address");
Memory::Write32(*address, value);
dirty_flags.OnMemoryWrite();
// Increment the current buffer position.
regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4;
}
Texture::TICEntry Maxwell3D::GetTICEntry(u32 tic_index) const {
const GPUVAddr tic_base_address = regs.tic.TICAddress();
const GPUVAddr tic_address_gpu = tic_base_address + tic_index * sizeof(Texture::TICEntry);
const auto tic_address_cpu = memory_manager.GpuToCpuAddress(tic_address_gpu);
ASSERT_MSG(tic_address_cpu, "Invalid GPU address");
Texture::TICEntry tic_entry;
Memory::ReadBlock(*tic_address_cpu, &tic_entry, sizeof(Texture::TICEntry));
ASSERT_MSG(tic_entry.header_version == Texture::TICHeaderVersion::BlockLinear ||
tic_entry.header_version == Texture::TICHeaderVersion::Pitch,
"TIC versions other than BlockLinear or Pitch are unimplemented");
const auto r_type = tic_entry.r_type.Value();
const auto g_type = tic_entry.g_type.Value();
const auto b_type = tic_entry.b_type.Value();
const auto a_type = tic_entry.a_type.Value();
// TODO(Subv): Different data types for separate components are not supported
ASSERT(r_type == g_type && r_type == b_type && r_type == a_type);
return tic_entry;
}
Texture::TSCEntry Maxwell3D::GetTSCEntry(u32 tsc_index) const {
const GPUVAddr tsc_base_address = regs.tsc.TSCAddress();
const GPUVAddr tsc_address_gpu = tsc_base_address + tsc_index * sizeof(Texture::TSCEntry);
const auto tsc_address_cpu = memory_manager.GpuToCpuAddress(tsc_address_gpu);
ASSERT_MSG(tsc_address_cpu, "Invalid GPU address");
Texture::TSCEntry tsc_entry;
Memory::ReadBlock(*tsc_address_cpu, &tsc_entry, sizeof(Texture::TSCEntry));
return tsc_entry;
}
std::vector<Texture::FullTextureInfo> Maxwell3D::GetStageTextures(Regs::ShaderStage stage) const {
std::vector<Texture::FullTextureInfo> textures;
auto& fragment_shader = state.shader_stages[static_cast<std::size_t>(stage)];
auto& tex_info_buffer = fragment_shader.const_buffers[regs.tex_cb_index];
ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0);
GPUVAddr tex_info_buffer_end = tex_info_buffer.address + tex_info_buffer.size;
// Offset into the texture constbuffer where the texture info begins.
static constexpr std::size_t TextureInfoOffset = 0x20;
for (GPUVAddr current_texture = tex_info_buffer.address + TextureInfoOffset;
current_texture < tex_info_buffer_end; current_texture += sizeof(Texture::TextureHandle)) {
const auto address = memory_manager.GpuToCpuAddress(current_texture);
ASSERT_MSG(address, "Invalid GPU address");
const Texture::TextureHandle tex_handle{Memory::Read32(*address)};
Texture::FullTextureInfo tex_info{};
// TODO(Subv): Use the shader to determine which textures are actually accessed.
tex_info.index =
static_cast<u32>(current_texture - tex_info_buffer.address - TextureInfoOffset) /
sizeof(Texture::TextureHandle);
// Load the TIC data.
auto tic_entry = GetTICEntry(tex_handle.tic_id);
// TODO(Subv): Workaround for BitField's move constructor being deleted.
std::memcpy(&tex_info.tic, &tic_entry, sizeof(tic_entry));
// Load the TSC data
auto tsc_entry = GetTSCEntry(tex_handle.tsc_id);
// TODO(Subv): Workaround for BitField's move constructor being deleted.
std::memcpy(&tex_info.tsc, &tsc_entry, sizeof(tsc_entry));
textures.push_back(tex_info);
}
return textures;
}
Texture::FullTextureInfo Maxwell3D::GetStageTexture(Regs::ShaderStage stage,
std::size_t offset) const {
auto& shader = state.shader_stages[static_cast<std::size_t>(stage)];
auto& tex_info_buffer = shader.const_buffers[regs.tex_cb_index];
ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0);
const GPUVAddr tex_info_address =
tex_info_buffer.address + offset * sizeof(Texture::TextureHandle);
ASSERT(tex_info_address < tex_info_buffer.address + tex_info_buffer.size);
const auto tex_address_cpu = memory_manager.GpuToCpuAddress(tex_info_address);
ASSERT_MSG(tex_address_cpu, "Invalid GPU address");
const Texture::TextureHandle tex_handle{Memory::Read32(*tex_address_cpu)};
Texture::FullTextureInfo tex_info{};
tex_info.index = static_cast<u32>(offset);
// Load the TIC data.
auto tic_entry = GetTICEntry(tex_handle.tic_id);
// TODO(Subv): Workaround for BitField's move constructor being deleted.
std::memcpy(&tex_info.tic, &tic_entry, sizeof(tic_entry));
// Load the TSC data
auto tsc_entry = GetTSCEntry(tex_handle.tsc_id);
// TODO(Subv): Workaround for BitField's move constructor being deleted.
std::memcpy(&tex_info.tsc, &tsc_entry, sizeof(tsc_entry));
return tex_info;
}
u32 Maxwell3D::GetRegisterValue(u32 method) const {
ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register");
return regs.reg_array[method];
}
void Maxwell3D::ProcessClearBuffers() {
ASSERT(regs.clear_buffers.R == regs.clear_buffers.G &&
regs.clear_buffers.R == regs.clear_buffers.B &&
regs.clear_buffers.R == regs.clear_buffers.A);
rasterizer.Clear();
}
} // namespace Tegra::Engines