mirror of
https://github.com/yuzu-emu/yuzu-mainline.git
synced 2025-01-25 17:51:09 +00:00
Merge pull request #7462 from bunnei/kernel-improve-scheduling
Kernel: Improve threading & scheduling V3
This commit is contained in:
commit
280c779898
|
@ -187,6 +187,7 @@ add_library(core STATIC
|
|||
hle/kernel/k_event.h
|
||||
hle/kernel/k_handle_table.cpp
|
||||
hle/kernel/k_handle_table.h
|
||||
hle/kernel/k_light_condition_variable.cpp
|
||||
hle/kernel/k_light_condition_variable.h
|
||||
hle/kernel/k_light_lock.cpp
|
||||
hle/kernel/k_light_lock.h
|
||||
|
@ -239,6 +240,7 @@ add_library(core STATIC
|
|||
hle/kernel/k_system_control.h
|
||||
hle/kernel/k_thread.cpp
|
||||
hle/kernel/k_thread.h
|
||||
hle/kernel/k_thread_queue.cpp
|
||||
hle/kernel/k_thread_queue.h
|
||||
hle/kernel/k_trace.h
|
||||
hle/kernel/k_transfer_memory.cpp
|
||||
|
|
|
@ -521,12 +521,6 @@ const ARM_Interface& System::CurrentArmInterface() const {
|
|||
return impl->kernel.CurrentPhysicalCore().ArmInterface();
|
||||
}
|
||||
|
||||
std::size_t System::CurrentCoreIndex() const {
|
||||
std::size_t core = impl->kernel.GetCurrentHostThreadID();
|
||||
ASSERT(core < Core::Hardware::NUM_CPU_CORES);
|
||||
return core;
|
||||
}
|
||||
|
||||
Kernel::PhysicalCore& System::CurrentPhysicalCore() {
|
||||
return impl->kernel.CurrentPhysicalCore();
|
||||
}
|
||||
|
|
|
@ -208,9 +208,6 @@ public:
|
|||
/// Gets an ARM interface to the CPU core that is currently running
|
||||
[[nodiscard]] const ARM_Interface& CurrentArmInterface() const;
|
||||
|
||||
/// Gets the index of the currently running CPU core
|
||||
[[nodiscard]] std::size_t CurrentCoreIndex() const;
|
||||
|
||||
/// Gets the physical core for the CPU core that is currently running
|
||||
[[nodiscard]] Kernel::PhysicalCore& CurrentPhysicalCore();
|
||||
|
||||
|
|
|
@ -117,17 +117,18 @@ void CpuManager::MultiCoreRunGuestLoop() {
|
|||
physical_core = &kernel.CurrentPhysicalCore();
|
||||
}
|
||||
system.ExitDynarmicProfile();
|
||||
physical_core->ArmInterface().ClearExclusiveState();
|
||||
kernel.CurrentScheduler()->RescheduleCurrentCore();
|
||||
{
|
||||
Kernel::KScopedDisableDispatch dd(kernel);
|
||||
physical_core->ArmInterface().ClearExclusiveState();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CpuManager::MultiCoreRunIdleThread() {
|
||||
auto& kernel = system.Kernel();
|
||||
while (true) {
|
||||
auto& physical_core = kernel.CurrentPhysicalCore();
|
||||
physical_core.Idle();
|
||||
kernel.CurrentScheduler()->RescheduleCurrentCore();
|
||||
Kernel::KScopedDisableDispatch dd(kernel);
|
||||
kernel.CurrentPhysicalCore().Idle();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -135,12 +136,12 @@ void CpuManager::MultiCoreRunSuspendThread() {
|
|||
auto& kernel = system.Kernel();
|
||||
kernel.CurrentScheduler()->OnThreadStart();
|
||||
while (true) {
|
||||
auto core = kernel.GetCurrentHostThreadID();
|
||||
auto core = kernel.CurrentPhysicalCoreIndex();
|
||||
auto& scheduler = *kernel.CurrentScheduler();
|
||||
Kernel::KThread* current_thread = scheduler.GetCurrentThread();
|
||||
Common::Fiber::YieldTo(current_thread->GetHostContext(), *core_data[core].host_context);
|
||||
ASSERT(scheduler.ContextSwitchPending());
|
||||
ASSERT(core == kernel.GetCurrentHostThreadID());
|
||||
ASSERT(core == kernel.CurrentPhysicalCoreIndex());
|
||||
scheduler.RescheduleCurrentCore();
|
||||
}
|
||||
}
|
||||
|
@ -346,13 +347,9 @@ void CpuManager::RunThread(std::stop_token stop_token, std::size_t core) {
|
|||
sc_sync_first_use = false;
|
||||
}
|
||||
|
||||
// Abort if emulation was killed before the session really starts
|
||||
if (!system.IsPoweredOn()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Emulation was stopped
|
||||
if (stop_token.stop_requested()) {
|
||||
break;
|
||||
return;
|
||||
}
|
||||
|
||||
auto current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread();
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
|
@ -28,7 +29,7 @@ bool ReadFromUser(Core::System& system, s32* out, VAddr address) {
|
|||
|
||||
bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 value) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.CurrentCoreIndex();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
|
@ -58,7 +59,7 @@ bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 valu
|
|||
|
||||
bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32 new_value) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.CurrentCoreIndex();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
|
@ -85,6 +86,27 @@ bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32
|
|||
return true;
|
||||
}
|
||||
|
||||
class ThreadQueueImplForKAddressArbiter final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKAddressArbiter(KernelCore& kernel_, KAddressArbiter::ThreadTree* t)
|
||||
: KThreadQueue(kernel_), m_tree(t) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task) override {
|
||||
// If the thread is waiting on an address arbiter, remove it from the tree.
|
||||
if (waiting_thread->IsWaitingForAddressArbiter()) {
|
||||
m_tree->erase(m_tree->iterator_to(*waiting_thread));
|
||||
waiting_thread->ClearAddressArbiter();
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KAddressArbiter::ThreadTree* m_tree;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
ResultCode KAddressArbiter::Signal(VAddr addr, s32 count) {
|
||||
|
@ -96,14 +118,14 @@ ResultCode KAddressArbiter::Signal(VAddr addr, s32 count) {
|
|||
auto it = thread_tree.nfind_light({addr, -1});
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->SetSyncedObject(nullptr, ResultSuccess);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->Wakeup();
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
target_thread->ClearAddressArbiter();
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
|
@ -129,14 +151,14 @@ ResultCode KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32
|
|||
auto it = thread_tree.nfind_light({addr, -1});
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->SetSyncedObject(nullptr, ResultSuccess);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->Wakeup();
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
target_thread->ClearAddressArbiter();
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
|
@ -197,14 +219,14 @@ ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32
|
|||
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->SetSyncedObject(nullptr, ResultSuccess);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->Wakeup();
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
target_thread->ClearAddressArbiter();
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
|
@ -214,6 +236,7 @@ ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32
|
|||
ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
|
||||
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
|
||||
|
@ -224,9 +247,6 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
|
|||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Set the synced object.
|
||||
cur_thread->SetSyncedObject(nullptr, ResultTimedOut);
|
||||
|
||||
// Read the value from userspace.
|
||||
s32 user_value{};
|
||||
bool succeeded{};
|
||||
|
@ -256,31 +276,20 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
|
|||
// Set the arbiter.
|
||||
cur_thread->SetAddressArbiter(&thread_tree, addr);
|
||||
thread_tree.insert(*cur_thread);
|
||||
cur_thread->SetState(ThreadState::Waiting);
|
||||
|
||||
// Wait for the thread to finish.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
|
||||
}
|
||||
|
||||
// Cancel the timer wait.
|
||||
kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
|
||||
|
||||
// Remove from the address arbiter.
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
if (cur_thread->IsWaitingForAddressArbiter()) {
|
||||
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
|
||||
cur_thread->ClearAddressArbiter();
|
||||
}
|
||||
}
|
||||
|
||||
// Get the result.
|
||||
KSynchronizationObject* dummy{};
|
||||
return cur_thread->GetWaitResult(&dummy);
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
|
||||
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
|
||||
|
@ -291,9 +300,6 @@ ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
|
|||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Set the synced object.
|
||||
cur_thread->SetSyncedObject(nullptr, ResultTimedOut);
|
||||
|
||||
// Read the value from userspace.
|
||||
s32 user_value{};
|
||||
if (!ReadFromUser(system, &user_value, addr)) {
|
||||
|
@ -316,26 +322,14 @@ ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
|
|||
// Set the arbiter.
|
||||
cur_thread->SetAddressArbiter(&thread_tree, addr);
|
||||
thread_tree.insert(*cur_thread);
|
||||
cur_thread->SetState(ThreadState::Waiting);
|
||||
|
||||
// Wait for the thread to finish.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
|
||||
}
|
||||
|
||||
// Cancel the timer wait.
|
||||
kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
|
||||
|
||||
// Remove from the address arbiter.
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
if (cur_thread->IsWaitingForAddressArbiter()) {
|
||||
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
|
||||
cur_thread->ClearAddressArbiter();
|
||||
}
|
||||
}
|
||||
|
||||
// Get the result.
|
||||
KSynchronizationObject* dummy{};
|
||||
return cur_thread->GetWaitResult(&dummy);
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
|
|
@ -170,6 +170,10 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
const std::string& GetName() const {
|
||||
return name;
|
||||
}
|
||||
|
||||
private:
|
||||
void RegisterWithKernel();
|
||||
void UnregisterWithKernel();
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_common.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
@ -33,7 +34,7 @@ bool WriteToUser(Core::System& system, VAddr address, const u32* p) {
|
|||
bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero,
|
||||
u32 new_orr_mask) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.CurrentCoreIndex();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// Load the value from the address.
|
||||
const auto expected = monitor.ExclusiveRead32(current_core, address);
|
||||
|
@ -57,6 +58,48 @@ bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero
|
|||
return true;
|
||||
}
|
||||
|
||||
class ThreadQueueImplForKConditionVariableWaitForAddress final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKConditionVariableWaitForAddress(KernelCore& kernel_)
|
||||
: KThreadQueue(kernel_) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
class ThreadQueueImplForKConditionVariableWaitConditionVariable final : public KThreadQueue {
|
||||
private:
|
||||
KConditionVariable::ThreadTree* m_tree;
|
||||
|
||||
public:
|
||||
explicit ThreadQueueImplForKConditionVariableWaitConditionVariable(
|
||||
KernelCore& kernel_, KConditionVariable::ThreadTree* t)
|
||||
: KThreadQueue(kernel_), m_tree(t) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
if (KThread* owner = waiting_thread->GetLockOwner(); owner != nullptr) {
|
||||
owner->RemoveWaiter(waiting_thread);
|
||||
}
|
||||
|
||||
// If the thread is waiting on a condvar, remove it from the tree.
|
||||
if (waiting_thread->IsWaitingForConditionVariable()) {
|
||||
m_tree->erase(m_tree->iterator_to(*waiting_thread));
|
||||
waiting_thread->ClearConditionVariable();
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
KConditionVariable::KConditionVariable(Core::System& system_)
|
||||
|
@ -78,84 +121,77 @@ ResultCode KConditionVariable::SignalToAddress(VAddr addr) {
|
|||
|
||||
// Determine the next tag.
|
||||
u32 next_value{};
|
||||
if (next_owner_thread) {
|
||||
if (next_owner_thread != nullptr) {
|
||||
next_value = next_owner_thread->GetAddressKeyValue();
|
||||
if (num_waiters > 1) {
|
||||
next_value |= Svc::HandleWaitMask;
|
||||
}
|
||||
|
||||
next_owner_thread->SetSyncedObject(nullptr, ResultSuccess);
|
||||
next_owner_thread->Wakeup();
|
||||
}
|
||||
|
||||
// Write the value to userspace.
|
||||
if (!WriteToUser(system, addr, std::addressof(next_value))) {
|
||||
if (next_owner_thread) {
|
||||
next_owner_thread->SetSyncedObject(nullptr, ResultInvalidCurrentMemory);
|
||||
// Write the value to userspace.
|
||||
ResultCode result{ResultSuccess};
|
||||
if (WriteToUser(system, addr, std::addressof(next_value))) [[likely]] {
|
||||
result = ResultSuccess;
|
||||
} else {
|
||||
result = ResultInvalidCurrentMemory;
|
||||
}
|
||||
|
||||
return ResultInvalidCurrentMemory;
|
||||
// Signal the next owner thread.
|
||||
next_owner_thread->EndWait(result);
|
||||
return result;
|
||||
} else {
|
||||
// Just write the value to userspace.
|
||||
R_UNLESS(WriteToUser(system, addr, std::addressof(next_value)),
|
||||
ResultInvalidCurrentMemory);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) {
|
||||
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
|
||||
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(kernel);
|
||||
|
||||
// Wait for the address.
|
||||
{
|
||||
KScopedAutoObject<KThread> owner_thread;
|
||||
ASSERT(owner_thread.IsNull());
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
cur_thread->SetSyncedObject(nullptr, ResultSuccess);
|
||||
|
||||
// Check if the thread should terminate.
|
||||
R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested);
|
||||
|
||||
{
|
||||
// Read the tag from userspace.
|
||||
u32 test_tag{};
|
||||
R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr),
|
||||
ResultInvalidCurrentMemory);
|
||||
|
||||
// If the tag isn't the handle (with wait mask), we're done.
|
||||
R_UNLESS(test_tag == (handle | Svc::HandleWaitMask), ResultSuccess);
|
||||
|
||||
// Get the lock owner thread.
|
||||
owner_thread =
|
||||
kernel.CurrentProcess()->GetHandleTable().GetObjectWithoutPseudoHandle<KThread>(
|
||||
handle);
|
||||
R_UNLESS(owner_thread.IsNotNull(), ResultInvalidHandle);
|
||||
|
||||
// Update the lock.
|
||||
cur_thread->SetAddressKey(addr, value);
|
||||
owner_thread->AddWaiter(cur_thread);
|
||||
cur_thread->SetState(ThreadState::Waiting);
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
|
||||
cur_thread->SetMutexWaitAddressForDebugging(addr);
|
||||
}
|
||||
}
|
||||
ASSERT(owner_thread.IsNotNull());
|
||||
}
|
||||
|
||||
// Remove the thread as a waiter from the lock owner.
|
||||
KThread* owner_thread{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
KThread* owner_thread = cur_thread->GetLockOwner();
|
||||
if (owner_thread != nullptr) {
|
||||
owner_thread->RemoveWaiter(cur_thread);
|
||||
}
|
||||
|
||||
// Check if the thread should terminate.
|
||||
R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested);
|
||||
|
||||
// Read the tag from userspace.
|
||||
u32 test_tag{};
|
||||
R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr), ResultInvalidCurrentMemory);
|
||||
|
||||
// If the tag isn't the handle (with wait mask), we're done.
|
||||
R_SUCCEED_IF(test_tag != (handle | Svc::HandleWaitMask));
|
||||
|
||||
// Get the lock owner thread.
|
||||
owner_thread = kernel.CurrentProcess()
|
||||
->GetHandleTable()
|
||||
.GetObjectWithoutPseudoHandle<KThread>(handle)
|
||||
.ReleasePointerUnsafe();
|
||||
R_UNLESS(owner_thread != nullptr, ResultInvalidHandle);
|
||||
|
||||
// Update the lock.
|
||||
cur_thread->SetAddressKey(addr, value);
|
||||
owner_thread->AddWaiter(cur_thread);
|
||||
|
||||
// Begin waiting.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
|
||||
cur_thread->SetMutexWaitAddressForDebugging(addr);
|
||||
}
|
||||
|
||||
// Close our reference to the owner thread, now that the wait is over.
|
||||
owner_thread->Close();
|
||||
|
||||
// Get the wait result.
|
||||
KSynchronizationObject* dummy{};
|
||||
return cur_thread->GetWaitResult(std::addressof(dummy));
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
KThread* KConditionVariable::SignalImpl(KThread* thread) {
|
||||
void KConditionVariable::SignalImpl(KThread* thread) {
|
||||
// Check pre-conditions.
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
|
@ -169,18 +205,16 @@ KThread* KConditionVariable::SignalImpl(KThread* thread) {
|
|||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
can_access = true;
|
||||
if (can_access) {
|
||||
if (can_access) [[likely]] {
|
||||
UpdateLockAtomic(system, std::addressof(prev_tag), address, own_tag,
|
||||
Svc::HandleWaitMask);
|
||||
}
|
||||
}
|
||||
|
||||
KThread* thread_to_close = nullptr;
|
||||
if (can_access) {
|
||||
if (can_access) [[likely]] {
|
||||
if (prev_tag == Svc::InvalidHandle) {
|
||||
// If nobody held the lock previously, we're all good.
|
||||
thread->SetSyncedObject(nullptr, ResultSuccess);
|
||||
thread->Wakeup();
|
||||
thread->EndWait(ResultSuccess);
|
||||
} else {
|
||||
// Get the previous owner.
|
||||
KThread* owner_thread = kernel.CurrentProcess()
|
||||
|
@ -189,33 +223,22 @@ KThread* KConditionVariable::SignalImpl(KThread* thread) {
|
|||
static_cast<Handle>(prev_tag & ~Svc::HandleWaitMask))
|
||||
.ReleasePointerUnsafe();
|
||||
|
||||
if (owner_thread) {
|
||||
if (owner_thread) [[likely]] {
|
||||
// Add the thread as a waiter on the owner.
|
||||
owner_thread->AddWaiter(thread);
|
||||
thread_to_close = owner_thread;
|
||||
owner_thread->Close();
|
||||
} else {
|
||||
// The lock was tagged with a thread that doesn't exist.
|
||||
thread->SetSyncedObject(nullptr, ResultInvalidState);
|
||||
thread->Wakeup();
|
||||
thread->EndWait(ResultInvalidState);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// If the address wasn't accessible, note so.
|
||||
thread->SetSyncedObject(nullptr, ResultInvalidCurrentMemory);
|
||||
thread->Wakeup();
|
||||
thread->EndWait(ResultInvalidCurrentMemory);
|
||||
}
|
||||
|
||||
return thread_to_close;
|
||||
}
|
||||
|
||||
void KConditionVariable::Signal(u64 cv_key, s32 count) {
|
||||
// Prepare for signaling.
|
||||
constexpr int MaxThreads = 16;
|
||||
|
||||
KLinkedList<KThread> thread_list{kernel};
|
||||
std::array<KThread*, MaxThreads> thread_array;
|
||||
s32 num_to_close{};
|
||||
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
|
@ -226,14 +249,7 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
|
|||
(it->GetConditionVariableKey() == cv_key)) {
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
|
||||
if (KThread* thread = SignalImpl(target_thread); thread != nullptr) {
|
||||
if (num_to_close < MaxThreads) {
|
||||
thread_array[num_to_close++] = thread;
|
||||
} else {
|
||||
thread_list.push_back(*thread);
|
||||
}
|
||||
}
|
||||
|
||||
this->SignalImpl(target_thread);
|
||||
it = thread_tree.erase(it);
|
||||
target_thread->ClearConditionVariable();
|
||||
++num_waiters;
|
||||
|
@ -245,27 +261,16 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
|
|||
WriteToUser(system, cv_key, std::addressof(has_waiter_flag));
|
||||
}
|
||||
}
|
||||
|
||||
// Close threads in the array.
|
||||
for (auto i = 0; i < num_to_close; ++i) {
|
||||
thread_array[i]->Close();
|
||||
}
|
||||
|
||||
// Close threads in the list.
|
||||
for (auto it = thread_list.begin(); it != thread_list.end(); it = thread_list.erase(it)) {
|
||||
(*it).Close();
|
||||
}
|
||||
}
|
||||
|
||||
ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKConditionVariableWaitConditionVariable wait_queue(
|
||||
kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
|
||||
|
||||
// Set the synced object.
|
||||
cur_thread->SetSyncedObject(nullptr, ResultTimedOut);
|
||||
KScopedSchedulerLockAndSleep slp(kernel, cur_thread, timeout);
|
||||
|
||||
// Check that the thread isn't terminating.
|
||||
if (cur_thread->IsTerminationRequested()) {
|
||||
|
@ -290,8 +295,7 @@ ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout)
|
|||
}
|
||||
|
||||
// Wake up the next owner.
|
||||
next_owner_thread->SetSyncedObject(nullptr, ResultSuccess);
|
||||
next_owner_thread->Wakeup();
|
||||
next_owner_thread->EndWait(ResultSuccess);
|
||||
}
|
||||
|
||||
// Write to the cv key.
|
||||
|
@ -308,40 +312,21 @@ ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout)
|
|||
}
|
||||
}
|
||||
|
||||
// If timeout is zero, time out.
|
||||
R_UNLESS(timeout != 0, ResultTimedOut);
|
||||
|
||||
// Update condition variable tracking.
|
||||
{
|
||||
cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value);
|
||||
thread_tree.insert(*cur_thread);
|
||||
}
|
||||
cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value);
|
||||
thread_tree.insert(*cur_thread);
|
||||
|
||||
// If the timeout is non-zero, set the thread as waiting.
|
||||
if (timeout != 0) {
|
||||
cur_thread->SetState(ThreadState::Waiting);
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
|
||||
cur_thread->SetMutexWaitAddressForDebugging(addr);
|
||||
}
|
||||
// Begin waiting.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
|
||||
cur_thread->SetMutexWaitAddressForDebugging(addr);
|
||||
}
|
||||
|
||||
// Cancel the timer wait.
|
||||
kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
|
||||
|
||||
// Remove from the condition variable.
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
if (KThread* owner = cur_thread->GetLockOwner(); owner != nullptr) {
|
||||
owner->RemoveWaiter(cur_thread);
|
||||
}
|
||||
|
||||
if (cur_thread->IsWaitingForConditionVariable()) {
|
||||
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
|
||||
cur_thread->ClearConditionVariable();
|
||||
}
|
||||
}
|
||||
|
||||
// Get the result.
|
||||
KSynchronizationObject* dummy{};
|
||||
return cur_thread->GetWaitResult(std::addressof(dummy));
|
||||
// Get the wait result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
|
|
@ -34,7 +34,7 @@ public:
|
|||
[[nodiscard]] ResultCode Wait(VAddr addr, u64 key, u32 value, s64 timeout);
|
||||
|
||||
private:
|
||||
[[nodiscard]] KThread* SignalImpl(KThread* thread);
|
||||
void SignalImpl(KThread* thread);
|
||||
|
||||
ThreadTree thread_tree;
|
||||
|
||||
|
|
|
@ -13,6 +13,7 @@ ResultCode KHandleTable::Finalize() {
|
|||
// Get the table and clear our record of it.
|
||||
u16 saved_table_size = 0;
|
||||
{
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
std::swap(m_table_size, saved_table_size);
|
||||
|
@ -43,6 +44,7 @@ bool KHandleTable::Remove(Handle handle) {
|
|||
// Find the object and free the entry.
|
||||
KAutoObject* obj = nullptr;
|
||||
{
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
if (this->IsValidHandle(handle)) {
|
||||
|
@ -62,6 +64,7 @@ bool KHandleTable::Remove(Handle handle) {
|
|||
}
|
||||
|
||||
ResultCode KHandleTable::Add(Handle* out_handle, KAutoObject* obj, u16 type) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Never exceed our capacity.
|
||||
|
@ -84,6 +87,7 @@ ResultCode KHandleTable::Add(Handle* out_handle, KAutoObject* obj, u16 type) {
|
|||
}
|
||||
|
||||
ResultCode KHandleTable::Reserve(Handle* out_handle) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Never exceed our capacity.
|
||||
|
@ -94,6 +98,7 @@ ResultCode KHandleTable::Reserve(Handle* out_handle) {
|
|||
}
|
||||
|
||||
void KHandleTable::Unreserve(Handle handle) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Unpack the handle.
|
||||
|
@ -112,6 +117,7 @@ void KHandleTable::Unreserve(Handle handle) {
|
|||
}
|
||||
|
||||
void KHandleTable::Register(Handle handle, KAutoObject* obj, u16 type) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Unpack the handle.
|
||||
|
|
|
@ -68,6 +68,7 @@ public:
|
|||
template <typename T = KAutoObject>
|
||||
KScopedAutoObject<T> GetObjectWithoutPseudoHandle(Handle handle) const {
|
||||
// Lock and look up in table.
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
if constexpr (std::is_same_v<T, KAutoObject>) {
|
||||
|
@ -122,6 +123,7 @@ public:
|
|||
size_t num_opened;
|
||||
{
|
||||
// Lock the table.
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
for (num_opened = 0; num_opened < num_handles; num_opened++) {
|
||||
// Get the current handle.
|
||||
|
|
80
src/core/hle/kernel/k_light_condition_variable.cpp
Normal file
80
src/core/hle/kernel/k_light_condition_variable.cpp
Normal file
|
@ -0,0 +1,80 @@
|
|||
// Copyright 2021 yuzu Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include "core/hle/kernel/k_light_condition_variable.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKLightConditionVariable final : public KThreadQueue {
|
||||
public:
|
||||
ThreadQueueImplForKLightConditionVariable(KernelCore& kernel_, KThread::WaiterList* wl,
|
||||
bool term)
|
||||
: KThreadQueue(kernel_), m_wait_list(wl), m_allow_terminating_thread(term) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task) override {
|
||||
// Only process waits if we're allowed to.
|
||||
if (ResultTerminationRequested == wait_result && m_allow_terminating_thread) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Remove the thread from the waiting thread from the light condition variable.
|
||||
m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KThread::WaiterList* m_wait_list;
|
||||
bool m_allow_terminating_thread;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KLightConditionVariable::Wait(KLightLock* lock, s64 timeout, bool allow_terminating_thread) {
|
||||
// Create thread queue.
|
||||
KThread* owner = GetCurrentThreadPointer(kernel);
|
||||
|
||||
ThreadQueueImplForKLightConditionVariable wait_queue(kernel, std::addressof(wait_list),
|
||||
allow_terminating_thread);
|
||||
|
||||
// Sleep the thread.
|
||||
{
|
||||
KScopedSchedulerLockAndSleep lk(kernel, owner, timeout);
|
||||
|
||||
if (!allow_terminating_thread && owner->IsTerminationRequested()) {
|
||||
lk.CancelSleep();
|
||||
return;
|
||||
}
|
||||
|
||||
lock->Unlock();
|
||||
|
||||
// Add the thread to the queue.
|
||||
wait_list.push_back(*owner);
|
||||
|
||||
// Begin waiting.
|
||||
owner->BeginWait(std::addressof(wait_queue));
|
||||
}
|
||||
|
||||
// Re-acquire the lock.
|
||||
lock->Lock();
|
||||
}
|
||||
|
||||
void KLightConditionVariable::Broadcast() {
|
||||
KScopedSchedulerLock lk(kernel);
|
||||
|
||||
// Signal all threads.
|
||||
for (auto it = wait_list.begin(); it != wait_list.end(); it = wait_list.erase(it)) {
|
||||
it->EndWait(ResultSuccess);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
|
@ -2,72 +2,24 @@
|
|||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
// This file references various implementation details from Atmosphere, an open-source firmware for
|
||||
// the Nintendo Switch. Copyright 2018-2020 Atmosphere-NX.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KLightLock;
|
||||
|
||||
class KLightConditionVariable {
|
||||
public:
|
||||
explicit KLightConditionVariable(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
|
||||
void Wait(KLightLock* lock, s64 timeout = -1, bool allow_terminating_thread = true) {
|
||||
WaitImpl(lock, timeout, allow_terminating_thread);
|
||||
}
|
||||
|
||||
void Broadcast() {
|
||||
KScopedSchedulerLock lk{kernel};
|
||||
|
||||
// Signal all threads.
|
||||
for (auto& thread : wait_list) {
|
||||
thread.SetState(ThreadState::Runnable);
|
||||
}
|
||||
}
|
||||
void Wait(KLightLock* lock, s64 timeout = -1, bool allow_terminating_thread = true);
|
||||
void Broadcast();
|
||||
|
||||
private:
|
||||
void WaitImpl(KLightLock* lock, s64 timeout, bool allow_terminating_thread) {
|
||||
KThread* owner = GetCurrentThreadPointer(kernel);
|
||||
|
||||
// Sleep the thread.
|
||||
{
|
||||
KScopedSchedulerLockAndSleep lk{kernel, owner, timeout};
|
||||
|
||||
if (!allow_terminating_thread && owner->IsTerminationRequested()) {
|
||||
lk.CancelSleep();
|
||||
return;
|
||||
}
|
||||
|
||||
lock->Unlock();
|
||||
|
||||
// Set the thread as waiting.
|
||||
GetCurrentThread(kernel).SetState(ThreadState::Waiting);
|
||||
|
||||
// Add the thread to the queue.
|
||||
wait_list.push_back(GetCurrentThread(kernel));
|
||||
}
|
||||
|
||||
// Remove the thread from the wait list.
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
wait_list.erase(wait_list.iterator_to(GetCurrentThread(kernel)));
|
||||
}
|
||||
|
||||
// Cancel the task that the sleep setup.
|
||||
kernel.TimeManager().UnscheduleTimeEvent(owner);
|
||||
|
||||
// Re-acquire the lock.
|
||||
lock->Lock();
|
||||
}
|
||||
|
||||
KernelCore& kernel;
|
||||
KThread::WaiterList wait_list{};
|
||||
};
|
||||
|
|
|
@ -5,44 +5,59 @@
|
|||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKLightLock final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKLightLock(KernelCore& kernel_) : KThreadQueue(kernel_) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
if (KThread* owner = waiting_thread->GetLockOwner(); owner != nullptr) {
|
||||
owner->RemoveWaiter(waiting_thread);
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KLightLock::Lock() {
|
||||
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
|
||||
const uintptr_t cur_thread_tag = (cur_thread | 1);
|
||||
|
||||
while (true) {
|
||||
uintptr_t old_tag = tag.load(std::memory_order_relaxed);
|
||||
|
||||
while (!tag.compare_exchange_weak(old_tag, (old_tag == 0) ? cur_thread : old_tag | 1,
|
||||
while (!tag.compare_exchange_weak(old_tag, (old_tag == 0) ? cur_thread : (old_tag | 1),
|
||||
std::memory_order_acquire)) {
|
||||
if ((old_tag | 1) == cur_thread_tag) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if ((old_tag == 0) || ((old_tag | 1) == cur_thread_tag)) {
|
||||
if (old_tag == 0 || this->LockSlowPath(old_tag | 1, cur_thread)) {
|
||||
break;
|
||||
}
|
||||
|
||||
LockSlowPath(old_tag | 1, cur_thread);
|
||||
}
|
||||
}
|
||||
|
||||
void KLightLock::Unlock() {
|
||||
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
|
||||
|
||||
uintptr_t expected = cur_thread;
|
||||
do {
|
||||
if (expected != cur_thread) {
|
||||
return UnlockSlowPath(cur_thread);
|
||||
}
|
||||
} while (!tag.compare_exchange_weak(expected, 0, std::memory_order_release));
|
||||
if (!tag.compare_exchange_strong(expected, 0, std::memory_order_release)) {
|
||||
this->UnlockSlowPath(cur_thread);
|
||||
}
|
||||
}
|
||||
|
||||
void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
|
||||
bool KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
|
||||
KThread* cur_thread = reinterpret_cast<KThread*>(_cur_thread);
|
||||
ThreadQueueImplForKLightLock wait_queue(kernel);
|
||||
|
||||
// Pend the current thread waiting on the owner thread.
|
||||
{
|
||||
|
@ -50,7 +65,7 @@ void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
|
|||
|
||||
// Ensure we actually have locking to do.
|
||||
if (tag.load(std::memory_order_relaxed) != _owner) {
|
||||
return;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Add the current thread as a waiter on the owner.
|
||||
|
@ -58,22 +73,15 @@ void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
|
|||
cur_thread->SetAddressKey(reinterpret_cast<uintptr_t>(std::addressof(tag)));
|
||||
owner_thread->AddWaiter(cur_thread);
|
||||
|
||||
// Set thread states.
|
||||
cur_thread->SetState(ThreadState::Waiting);
|
||||
// Begin waiting to hold the lock.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
|
||||
if (owner_thread->IsSuspended()) {
|
||||
owner_thread->ContinueIfHasKernelWaiters();
|
||||
}
|
||||
}
|
||||
|
||||
// We're no longer waiting on the lock owner.
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (KThread* owner_thread = cur_thread->GetLockOwner(); owner_thread != nullptr) {
|
||||
owner_thread->RemoveWaiter(cur_thread);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
|
||||
|
@ -81,22 +89,20 @@ void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
|
|||
|
||||
// Unlock.
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Get the next owner.
|
||||
s32 num_waiters = 0;
|
||||
s32 num_waiters;
|
||||
KThread* next_owner = owner_thread->RemoveWaiterByKey(
|
||||
std::addressof(num_waiters), reinterpret_cast<uintptr_t>(std::addressof(tag)));
|
||||
|
||||
// Pass the lock to the next owner.
|
||||
uintptr_t next_tag = 0;
|
||||
if (next_owner != nullptr) {
|
||||
next_tag = reinterpret_cast<uintptr_t>(next_owner);
|
||||
if (num_waiters > 1) {
|
||||
next_tag |= 0x1;
|
||||
}
|
||||
next_tag =
|
||||
reinterpret_cast<uintptr_t>(next_owner) | static_cast<uintptr_t>(num_waiters > 1);
|
||||
|
||||
next_owner->SetState(ThreadState::Runnable);
|
||||
next_owner->EndWait(ResultSuccess);
|
||||
|
||||
if (next_owner->IsSuspended()) {
|
||||
next_owner->ContinueIfHasKernelWaiters();
|
||||
|
@ -110,7 +116,7 @@ void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
|
|||
}
|
||||
|
||||
// Write the new tag value.
|
||||
tag.store(next_tag);
|
||||
tag.store(next_tag, std::memory_order_release);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ public:
|
|||
|
||||
void Unlock();
|
||||
|
||||
void LockSlowPath(uintptr_t owner, uintptr_t cur_thread);
|
||||
bool LockSlowPath(uintptr_t owner, uintptr_t cur_thread);
|
||||
|
||||
void UnlockSlowPath(uintptr_t cur_thread);
|
||||
|
||||
|
|
|
@ -60,6 +60,7 @@ void SetupMainThread(Core::System& system, KProcess& owner_process, u32 priority
|
|||
thread->GetContext64().cpu_registers[0] = 0;
|
||||
thread->GetContext32().cpu_registers[1] = thread_handle;
|
||||
thread->GetContext64().cpu_registers[1] = thread_handle;
|
||||
thread->DisableDispatch();
|
||||
|
||||
auto& kernel = system.Kernel();
|
||||
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
|
||||
|
@ -227,12 +228,15 @@ void KProcess::PinCurrentThread() {
|
|||
const s32 core_id = GetCurrentCoreId(kernel);
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
|
||||
// Pin it.
|
||||
PinThread(core_id, cur_thread);
|
||||
cur_thread->Pin();
|
||||
// If the thread isn't terminated, pin it.
|
||||
if (!cur_thread->IsTerminationRequested()) {
|
||||
// Pin it.
|
||||
PinThread(core_id, cur_thread);
|
||||
cur_thread->Pin();
|
||||
|
||||
// An update is needed.
|
||||
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
||||
// An update is needed.
|
||||
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
||||
}
|
||||
}
|
||||
|
||||
void KProcess::UnpinCurrentThread() {
|
||||
|
@ -250,6 +254,20 @@ void KProcess::UnpinCurrentThread() {
|
|||
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
||||
}
|
||||
|
||||
void KProcess::UnpinThread(KThread* thread) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
// Get the thread's core id.
|
||||
const auto core_id = thread->GetActiveCore();
|
||||
|
||||
// Unpin it.
|
||||
UnpinThread(core_id, thread);
|
||||
thread->Unpin();
|
||||
|
||||
// An update is needed.
|
||||
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
||||
}
|
||||
|
||||
ResultCode KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
|
||||
[[maybe_unused]] size_t size) {
|
||||
// Lock ourselves, to prevent concurrent access.
|
||||
|
|
|
@ -347,6 +347,7 @@ public:
|
|||
|
||||
void PinCurrentThread();
|
||||
void UnpinCurrentThread();
|
||||
void UnpinThread(KThread* thread);
|
||||
|
||||
KLightLock& GetStateLock() {
|
||||
return state_lock;
|
||||
|
|
|
@ -240,8 +240,8 @@ void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s3
|
|||
|
||||
// If the thread is runnable, we want to change its priority in the queue.
|
||||
if (thread->GetRawState() == ThreadState::Runnable) {
|
||||
GetPriorityQueue(kernel).ChangePriority(
|
||||
old_priority, thread == kernel.CurrentScheduler()->GetCurrentThread(), thread);
|
||||
GetPriorityQueue(kernel).ChangePriority(old_priority,
|
||||
thread == kernel.GetCurrentEmuThread(), thread);
|
||||
IncrementScheduledCount(thread);
|
||||
SetSchedulerUpdateNeeded(kernel);
|
||||
}
|
||||
|
@ -360,7 +360,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
|
|||
}
|
||||
|
||||
bool KScheduler::CanSchedule(KernelCore& kernel) {
|
||||
return kernel.CurrentScheduler()->GetCurrentThread()->GetDisableDispatchCount() <= 1;
|
||||
return kernel.GetCurrentEmuThread()->GetDisableDispatchCount() <= 1;
|
||||
}
|
||||
|
||||
bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) {
|
||||
|
@ -376,20 +376,30 @@ void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) {
|
|||
}
|
||||
|
||||
void KScheduler::DisableScheduling(KernelCore& kernel) {
|
||||
if (auto* scheduler = kernel.CurrentScheduler(); scheduler) {
|
||||
ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 0);
|
||||
scheduler->GetCurrentThread()->DisableDispatch();
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(GetCurrentThreadPointer(kernel)->GetDisableDispatchCount() >= 0);
|
||||
GetCurrentThreadPointer(kernel)->DisableDispatch();
|
||||
}
|
||||
|
||||
void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
|
||||
if (auto* scheduler = kernel.CurrentScheduler(); scheduler) {
|
||||
ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1);
|
||||
if (scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1) {
|
||||
scheduler->GetCurrentThread()->EnableDispatch();
|
||||
}
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto* current_thread = GetCurrentThreadPointer(kernel);
|
||||
|
||||
ASSERT(current_thread->GetDisableDispatchCount() >= 1);
|
||||
|
||||
if (current_thread->GetDisableDispatchCount() > 1) {
|
||||
current_thread->EnableDispatch();
|
||||
} else {
|
||||
RescheduleCores(kernel, cores_needing_scheduling);
|
||||
}
|
||||
RescheduleCores(kernel, cores_needing_scheduling);
|
||||
}
|
||||
|
||||
u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
|
||||
|
@ -617,13 +627,17 @@ KScheduler::KScheduler(Core::System& system_, s32 core_id_) : system{system_}, c
|
|||
state.highest_priority_thread = nullptr;
|
||||
}
|
||||
|
||||
KScheduler::~KScheduler() {
|
||||
void KScheduler::Finalize() {
|
||||
if (idle_thread) {
|
||||
idle_thread->Close();
|
||||
idle_thread = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
KScheduler::~KScheduler() {
|
||||
ASSERT(!idle_thread);
|
||||
}
|
||||
|
||||
KThread* KScheduler::GetCurrentThread() const {
|
||||
if (auto result = current_thread.load(); result) {
|
||||
return result;
|
||||
|
@ -642,10 +656,12 @@ void KScheduler::RescheduleCurrentCore() {
|
|||
if (phys_core.IsInterrupted()) {
|
||||
phys_core.ClearInterrupt();
|
||||
}
|
||||
|
||||
guard.Lock();
|
||||
if (state.needs_scheduling.load()) {
|
||||
Schedule();
|
||||
} else {
|
||||
GetCurrentThread()->EnableDispatch();
|
||||
guard.Unlock();
|
||||
}
|
||||
}
|
||||
|
@ -655,26 +671,33 @@ void KScheduler::OnThreadStart() {
|
|||
}
|
||||
|
||||
void KScheduler::Unload(KThread* thread) {
|
||||
ASSERT(thread);
|
||||
|
||||
LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr");
|
||||
|
||||
if (thread) {
|
||||
if (thread->IsCallingSvc()) {
|
||||
thread->ClearIsCallingSvc();
|
||||
}
|
||||
if (!thread->IsTerminationRequested()) {
|
||||
prev_thread = thread;
|
||||
|
||||
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
|
||||
cpu_core.SaveContext(thread->GetContext32());
|
||||
cpu_core.SaveContext(thread->GetContext64());
|
||||
// Save the TPIDR_EL0 system register in case it was modified.
|
||||
thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
|
||||
cpu_core.ClearExclusiveState();
|
||||
} else {
|
||||
prev_thread = nullptr;
|
||||
}
|
||||
thread->context_guard.Unlock();
|
||||
if (thread->IsCallingSvc()) {
|
||||
thread->ClearIsCallingSvc();
|
||||
}
|
||||
|
||||
auto& physical_core = system.Kernel().PhysicalCore(core_id);
|
||||
if (!physical_core.IsInitialized()) {
|
||||
return;
|
||||
}
|
||||
|
||||
Core::ARM_Interface& cpu_core = physical_core.ArmInterface();
|
||||
cpu_core.SaveContext(thread->GetContext32());
|
||||
cpu_core.SaveContext(thread->GetContext64());
|
||||
// Save the TPIDR_EL0 system register in case it was modified.
|
||||
thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
|
||||
cpu_core.ClearExclusiveState();
|
||||
|
||||
if (!thread->IsTerminationRequested() && thread->GetActiveCore() == core_id) {
|
||||
prev_thread = thread;
|
||||
} else {
|
||||
prev_thread = nullptr;
|
||||
}
|
||||
|
||||
thread->context_guard.Unlock();
|
||||
}
|
||||
|
||||
void KScheduler::Reload(KThread* thread) {
|
||||
|
@ -683,11 +706,6 @@ void KScheduler::Reload(KThread* thread) {
|
|||
if (thread) {
|
||||
ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable.");
|
||||
|
||||
auto* const thread_owner_process = thread->GetOwnerProcess();
|
||||
if (thread_owner_process != nullptr) {
|
||||
system.Kernel().MakeCurrentProcess(thread_owner_process);
|
||||
}
|
||||
|
||||
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
|
||||
cpu_core.LoadContext(thread->GetContext32());
|
||||
cpu_core.LoadContext(thread->GetContext64());
|
||||
|
@ -705,7 +723,7 @@ void KScheduler::SwitchContextStep2() {
|
|||
}
|
||||
|
||||
void KScheduler::ScheduleImpl() {
|
||||
KThread* previous_thread = current_thread.load();
|
||||
KThread* previous_thread = GetCurrentThread();
|
||||
KThread* next_thread = state.highest_priority_thread;
|
||||
|
||||
state.needs_scheduling = false;
|
||||
|
@ -717,10 +735,15 @@ void KScheduler::ScheduleImpl() {
|
|||
|
||||
// If we're not actually switching thread, there's nothing to do.
|
||||
if (next_thread == current_thread.load()) {
|
||||
previous_thread->EnableDispatch();
|
||||
guard.Unlock();
|
||||
return;
|
||||
}
|
||||
|
||||
if (next_thread->GetCurrentCore() != core_id) {
|
||||
next_thread->SetCurrentCore(core_id);
|
||||
}
|
||||
|
||||
current_thread.store(next_thread);
|
||||
|
||||
KProcess* const previous_process = system.Kernel().CurrentProcess();
|
||||
|
@ -731,11 +754,7 @@ void KScheduler::ScheduleImpl() {
|
|||
Unload(previous_thread);
|
||||
|
||||
std::shared_ptr<Common::Fiber>* old_context;
|
||||
if (previous_thread != nullptr) {
|
||||
old_context = &previous_thread->GetHostContext();
|
||||
} else {
|
||||
old_context = &idle_thread->GetHostContext();
|
||||
}
|
||||
old_context = &previous_thread->GetHostContext();
|
||||
guard.Unlock();
|
||||
|
||||
Common::Fiber::YieldTo(*old_context, *switch_fiber);
|
||||
|
|
|
@ -33,6 +33,8 @@ public:
|
|||
explicit KScheduler(Core::System& system_, s32 core_id_);
|
||||
~KScheduler();
|
||||
|
||||
void Finalize();
|
||||
|
||||
/// Reschedules to the next available thread (call after current thread is suspended)
|
||||
void RescheduleCurrentCore();
|
||||
|
||||
|
|
|
@ -23,6 +23,11 @@ public:
|
|||
}
|
||||
|
||||
void Lock() {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (IsLockedByCurrentThread()) {
|
||||
// If we already own the lock, we can just increment the count.
|
||||
ASSERT(lock_count > 0);
|
||||
|
@ -43,6 +48,11 @@ public:
|
|||
}
|
||||
|
||||
void Unlock() {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(IsLockedByCurrentThread());
|
||||
ASSERT(lock_count > 0);
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/global_scheduler_context.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
|
|
|
@ -175,8 +175,7 @@ ResultCode KServerSession::CompleteSyncRequest(HLERequestContext& context) {
|
|||
{
|
||||
KScopedSchedulerLock lock(kernel);
|
||||
if (!context.IsThreadWaiting()) {
|
||||
context.GetThread().Wakeup();
|
||||
context.GetThread().SetSyncedObject(nullptr, result);
|
||||
context.GetThread().EndWait(result);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -8,11 +8,66 @@
|
|||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKSynchronizationObjectWait final : public KThreadQueueWithoutEndWait {
|
||||
public:
|
||||
ThreadQueueImplForKSynchronizationObjectWait(KernelCore& kernel_, KSynchronizationObject** o,
|
||||
KSynchronizationObject::ThreadListNode* n, s32 c)
|
||||
: KThreadQueueWithoutEndWait(kernel_), m_objects(o), m_nodes(n), m_count(c) {}
|
||||
|
||||
void NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
|
||||
ResultCode wait_result) override {
|
||||
// Determine the sync index, and unlink all nodes.
|
||||
s32 sync_index = -1;
|
||||
for (auto i = 0; i < m_count; ++i) {
|
||||
// Check if this is the signaled object.
|
||||
if (m_objects[i] == signaled_object && sync_index == -1) {
|
||||
sync_index = i;
|
||||
}
|
||||
|
||||
// Unlink the current node from the current object.
|
||||
m_objects[i]->UnlinkNode(std::addressof(m_nodes[i]));
|
||||
}
|
||||
|
||||
// Set the waiting thread's sync index.
|
||||
waiting_thread->SetSyncedIndex(sync_index);
|
||||
|
||||
// Set the waiting thread as not cancellable.
|
||||
waiting_thread->ClearCancellable();
|
||||
|
||||
// Invoke the base end wait handler.
|
||||
KThreadQueue::EndWait(waiting_thread, wait_result);
|
||||
}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task) override {
|
||||
// Remove all nodes from our list.
|
||||
for (auto i = 0; i < m_count; ++i) {
|
||||
m_objects[i]->UnlinkNode(std::addressof(m_nodes[i]));
|
||||
}
|
||||
|
||||
// Set the waiting thread as not cancellable.
|
||||
waiting_thread->ClearCancellable();
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KSynchronizationObject** m_objects;
|
||||
KSynchronizationObject::ThreadListNode* m_nodes;
|
||||
s32 m_count;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KSynchronizationObject::Finalize() {
|
||||
this->OnFinalizeSynchronizationObject();
|
||||
KAutoObject::Finalize();
|
||||
|
@ -25,11 +80,19 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
|
|||
std::vector<ThreadListNode> thread_nodes(num_objects);
|
||||
|
||||
// Prepare for wait.
|
||||
KThread* thread = kernel_ctx.CurrentScheduler()->GetCurrentThread();
|
||||
KThread* thread = GetCurrentThreadPointer(kernel_ctx);
|
||||
ThreadQueueImplForKSynchronizationObjectWait wait_queue(kernel_ctx, objects,
|
||||
thread_nodes.data(), num_objects);
|
||||
|
||||
{
|
||||
// Setup the scheduling lock and sleep.
|
||||
KScopedSchedulerLockAndSleep slp{kernel_ctx, thread, timeout};
|
||||
KScopedSchedulerLockAndSleep slp(kernel_ctx, thread, timeout);
|
||||
|
||||
// Check if the thread should terminate.
|
||||
if (thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Check if any of the objects are already signaled.
|
||||
for (auto i = 0; i < num_objects; ++i) {
|
||||
|
@ -48,12 +111,6 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
|
|||
return ResultTimedOut;
|
||||
}
|
||||
|
||||
// Check if the thread should terminate.
|
||||
if (thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Check if waiting was canceled.
|
||||
if (thread->IsWaitCancelled()) {
|
||||
slp.CancelSleep();
|
||||
|
@ -66,73 +123,25 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
|
|||
thread_nodes[i].thread = thread;
|
||||
thread_nodes[i].next = nullptr;
|
||||
|
||||
if (objects[i]->thread_list_tail == nullptr) {
|
||||
objects[i]->thread_list_head = std::addressof(thread_nodes[i]);
|
||||
} else {
|
||||
objects[i]->thread_list_tail->next = std::addressof(thread_nodes[i]);
|
||||
}
|
||||
|
||||
objects[i]->thread_list_tail = std::addressof(thread_nodes[i]);
|
||||
objects[i]->LinkNode(std::addressof(thread_nodes[i]));
|
||||
}
|
||||
|
||||
// For debugging only
|
||||
thread->SetWaitObjectsForDebugging({objects, static_cast<std::size_t>(num_objects)});
|
||||
|
||||
// Mark the thread as waiting.
|
||||
// Mark the thread as cancellable.
|
||||
thread->SetCancellable();
|
||||
thread->SetSyncedObject(nullptr, ResultTimedOut);
|
||||
thread->SetState(ThreadState::Waiting);
|
||||
|
||||
// Clear the thread's synced index.
|
||||
thread->SetSyncedIndex(-1);
|
||||
|
||||
// Wait for an object to be signaled.
|
||||
thread->BeginWait(std::addressof(wait_queue));
|
||||
thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Synchronization);
|
||||
}
|
||||
|
||||
// The lock/sleep is done, so we should be able to get our result.
|
||||
|
||||
// Thread is no longer cancellable.
|
||||
thread->ClearCancellable();
|
||||
|
||||
// For debugging only
|
||||
thread->SetWaitObjectsForDebugging({});
|
||||
|
||||
// Cancel the timer as needed.
|
||||
kernel_ctx.TimeManager().UnscheduleTimeEvent(thread);
|
||||
// Set the output index.
|
||||
*out_index = thread->GetSyncedIndex();
|
||||
|
||||
// Get the wait result.
|
||||
ResultCode wait_result{ResultSuccess};
|
||||
s32 sync_index = -1;
|
||||
{
|
||||
KScopedSchedulerLock lock(kernel_ctx);
|
||||
KSynchronizationObject* synced_obj;
|
||||
wait_result = thread->GetWaitResult(std::addressof(synced_obj));
|
||||
|
||||
for (auto i = 0; i < num_objects; ++i) {
|
||||
// Unlink the object from the list.
|
||||
ThreadListNode* prev_ptr =
|
||||
reinterpret_cast<ThreadListNode*>(std::addressof(objects[i]->thread_list_head));
|
||||
ThreadListNode* prev_val = nullptr;
|
||||
ThreadListNode *prev, *tail_prev;
|
||||
|
||||
do {
|
||||
prev = prev_ptr;
|
||||
prev_ptr = prev_ptr->next;
|
||||
tail_prev = prev_val;
|
||||
prev_val = prev_ptr;
|
||||
} while (prev_ptr != std::addressof(thread_nodes[i]));
|
||||
|
||||
if (objects[i]->thread_list_tail == std::addressof(thread_nodes[i])) {
|
||||
objects[i]->thread_list_tail = tail_prev;
|
||||
}
|
||||
|
||||
prev->next = thread_nodes[i].next;
|
||||
|
||||
if (objects[i] == synced_obj) {
|
||||
sync_index = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Set output.
|
||||
*out_index = sync_index;
|
||||
return wait_result;
|
||||
return thread->GetWaitResult();
|
||||
}
|
||||
|
||||
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_)
|
||||
|
@ -141,7 +150,7 @@ KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_)
|
|||
KSynchronizationObject::~KSynchronizationObject() = default;
|
||||
|
||||
void KSynchronizationObject::NotifyAvailable(ResultCode result) {
|
||||
KScopedSchedulerLock lock(kernel);
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// If we're not signaled, we've nothing to notify.
|
||||
if (!this->IsSignaled()) {
|
||||
|
@ -150,11 +159,7 @@ void KSynchronizationObject::NotifyAvailable(ResultCode result) {
|
|||
|
||||
// Iterate over each thread.
|
||||
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
|
||||
KThread* thread = cur_node->thread;
|
||||
if (thread->GetState() == ThreadState::Waiting) {
|
||||
thread->SetSyncedObject(this, result);
|
||||
thread->SetState(ThreadState::Runnable);
|
||||
}
|
||||
cur_node->thread->NotifyAvailable(this, result);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -35,6 +35,38 @@ public:
|
|||
|
||||
[[nodiscard]] std::vector<KThread*> GetWaitingThreadsForDebugging() const;
|
||||
|
||||
void LinkNode(ThreadListNode* node_) {
|
||||
// Link the node to the list.
|
||||
if (thread_list_tail == nullptr) {
|
||||
thread_list_head = node_;
|
||||
} else {
|
||||
thread_list_tail->next = node_;
|
||||
}
|
||||
|
||||
thread_list_tail = node_;
|
||||
}
|
||||
|
||||
void UnlinkNode(ThreadListNode* node_) {
|
||||
// Unlink the node from the list.
|
||||
ThreadListNode* prev_ptr =
|
||||
reinterpret_cast<ThreadListNode*>(std::addressof(thread_list_head));
|
||||
ThreadListNode* prev_val = nullptr;
|
||||
ThreadListNode *prev, *tail_prev;
|
||||
|
||||
do {
|
||||
prev = prev_ptr;
|
||||
prev_ptr = prev_ptr->next;
|
||||
tail_prev = prev_val;
|
||||
prev_val = prev_ptr;
|
||||
} while (prev_ptr != node_);
|
||||
|
||||
if (thread_list_tail == node_) {
|
||||
thread_list_tail = tail_prev;
|
||||
}
|
||||
|
||||
prev->next = node_->next;
|
||||
}
|
||||
|
||||
protected:
|
||||
explicit KSynchronizationObject(KernelCore& kernel);
|
||||
~KSynchronizationObject() override;
|
||||
|
|
|
@ -13,6 +13,9 @@
|
|||
#include "common/common_types.h"
|
||||
#include "common/fiber.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/scope_exit.h"
|
||||
#include "common/settings.h"
|
||||
#include "common/thread_queue_list.h"
|
||||
#include "core/core.h"
|
||||
#include "core/cpu_manager.h"
|
||||
#include "core/hardware_properties.h"
|
||||
|
@ -56,6 +59,34 @@ static void ResetThreadContext64(Core::ARM_Interface::ThreadContext64& context,
|
|||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKThreadSleep final : public KThreadQueueWithoutEndWait {
|
||||
public:
|
||||
explicit ThreadQueueImplForKThreadSleep(KernelCore& kernel_)
|
||||
: KThreadQueueWithoutEndWait(kernel_) {}
|
||||
};
|
||||
|
||||
class ThreadQueueImplForKThreadSetProperty final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKThreadSetProperty(KernelCore& kernel_, KThread::WaiterList* wl)
|
||||
: KThreadQueue(kernel_), m_wait_list(wl) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task) override {
|
||||
// Remove the thread from the wait list.
|
||||
m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KThread::WaiterList* m_wait_list;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
KThread::KThread(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, activity_pause_lock{kernel_} {}
|
||||
KThread::~KThread() = default;
|
||||
|
@ -82,6 +113,8 @@ ResultCode KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_s
|
|||
[[fallthrough]];
|
||||
case ThreadType::HighPriority:
|
||||
[[fallthrough]];
|
||||
case ThreadType::Dummy:
|
||||
[[fallthrough]];
|
||||
case ThreadType::User:
|
||||
ASSERT(((owner == nullptr) ||
|
||||
(owner->GetCoreMask() | (1ULL << virt_core)) == owner->GetCoreMask()));
|
||||
|
@ -127,11 +160,8 @@ ResultCode KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_s
|
|||
priority = prio;
|
||||
base_priority = prio;
|
||||
|
||||
// Set sync object and waiting lock to null.
|
||||
synced_object = nullptr;
|
||||
|
||||
// Initialize sleeping queue.
|
||||
sleeping_queue = nullptr;
|
||||
wait_queue = nullptr;
|
||||
|
||||
// Set suspend flags.
|
||||
suspend_request_flags = 0;
|
||||
|
@ -184,7 +214,7 @@ ResultCode KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_s
|
|||
// Setup the stack parameters.
|
||||
StackParameters& sp = GetStackParameters();
|
||||
sp.cur_thread = this;
|
||||
sp.disable_count = 1;
|
||||
sp.disable_count = 0;
|
||||
SetInExceptionHandler();
|
||||
|
||||
// Set thread ID.
|
||||
|
@ -211,15 +241,16 @@ ResultCode KThread::InitializeThread(KThread* thread, KThreadFunction func, uint
|
|||
// Initialize the thread.
|
||||
R_TRY(thread->Initialize(func, arg, user_stack_top, prio, core, owner, type));
|
||||
|
||||
// Initialize host context.
|
||||
// Initialize emulation parameters.
|
||||
thread->host_context =
|
||||
std::make_shared<Common::Fiber>(std::move(init_func), init_func_parameter);
|
||||
thread->is_single_core = !Settings::values.use_multi_core.GetValue();
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
ResultCode KThread::InitializeDummyThread(KThread* thread) {
|
||||
return thread->Initialize({}, {}, {}, DefaultThreadPriority, 3, {}, ThreadType::Main);
|
||||
return thread->Initialize({}, {}, {}, DefaultThreadPriority, 3, {}, ThreadType::Dummy);
|
||||
}
|
||||
|
||||
ResultCode KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) {
|
||||
|
@ -273,11 +304,14 @@ void KThread::Finalize() {
|
|||
|
||||
auto it = waiter_list.begin();
|
||||
while (it != waiter_list.end()) {
|
||||
// The thread shouldn't be a kernel waiter.
|
||||
// Clear the lock owner
|
||||
it->SetLockOwner(nullptr);
|
||||
it->SetSyncedObject(nullptr, ResultInvalidState);
|
||||
it->Wakeup();
|
||||
|
||||
// Erase the waiter from our list.
|
||||
it = waiter_list.erase(it);
|
||||
|
||||
// Cancel the thread's wait.
|
||||
it->CancelWait(ResultInvalidState, true);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -294,15 +328,12 @@ bool KThread::IsSignaled() const {
|
|||
return signaled;
|
||||
}
|
||||
|
||||
void KThread::Wakeup() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
void KThread::OnTimer() {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
// If we're waiting, cancel the wait.
|
||||
if (GetState() == ThreadState::Waiting) {
|
||||
if (sleeping_queue != nullptr) {
|
||||
sleeping_queue->WakeupThread(this);
|
||||
} else {
|
||||
SetState(ThreadState::Runnable);
|
||||
}
|
||||
wait_queue->CancelWait(this, ResultTimedOut, false);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -327,7 +358,7 @@ void KThread::StartTermination() {
|
|||
|
||||
// Signal.
|
||||
signaled = true;
|
||||
NotifyAvailable();
|
||||
KSynchronizationObject::NotifyAvailable();
|
||||
|
||||
// Clear previous thread in KScheduler.
|
||||
KScheduler::ClearPreviousThread(kernel, this);
|
||||
|
@ -475,30 +506,32 @@ ResultCode KThread::GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_m
|
|||
return ResultSuccess;
|
||||
}
|
||||
|
||||
ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
|
||||
ResultCode KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
|
||||
ASSERT(parent != nullptr);
|
||||
ASSERT(v_affinity_mask != 0);
|
||||
KScopedLightLock lk{activity_pause_lock};
|
||||
KScopedLightLock lk(activity_pause_lock);
|
||||
|
||||
// Set the core mask.
|
||||
u64 p_affinity_mask = 0;
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
ASSERT(num_core_migration_disables >= 0);
|
||||
|
||||
// If the core id is no-update magic, preserve the ideal core id.
|
||||
if (cpu_core_id == Svc::IdealCoreNoUpdate) {
|
||||
cpu_core_id = virtual_ideal_core_id;
|
||||
R_UNLESS(((1ULL << cpu_core_id) & v_affinity_mask) != 0, ResultInvalidCombination);
|
||||
// If we're updating, set our ideal virtual core.
|
||||
if (core_id_ != Svc::IdealCoreNoUpdate) {
|
||||
virtual_ideal_core_id = core_id_;
|
||||
} else {
|
||||
// Preserve our ideal core id.
|
||||
core_id_ = virtual_ideal_core_id;
|
||||
R_UNLESS(((1ULL << core_id_) & v_affinity_mask) != 0, ResultInvalidCombination);
|
||||
}
|
||||
|
||||
// Set the virtual core/affinity mask.
|
||||
virtual_ideal_core_id = cpu_core_id;
|
||||
// Set our affinity mask.
|
||||
virtual_affinity_mask = v_affinity_mask;
|
||||
|
||||
// Translate the virtual core to a physical core.
|
||||
if (cpu_core_id >= 0) {
|
||||
cpu_core_id = Core::Hardware::VirtualToPhysicalCoreMap[cpu_core_id];
|
||||
if (core_id_ >= 0) {
|
||||
core_id_ = Core::Hardware::VirtualToPhysicalCoreMap[core_id_];
|
||||
}
|
||||
|
||||
// Translate the virtual affinity mask to a physical one.
|
||||
|
@ -513,7 +546,7 @@ ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
|
|||
const KAffinityMask old_mask = physical_affinity_mask;
|
||||
|
||||
// Set our new ideals.
|
||||
physical_ideal_core_id = cpu_core_id;
|
||||
physical_ideal_core_id = core_id_;
|
||||
physical_affinity_mask.SetAffinityMask(p_affinity_mask);
|
||||
|
||||
if (physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
|
||||
|
@ -531,18 +564,18 @@ ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
|
|||
}
|
||||
} else {
|
||||
// Otherwise, we edit the original affinity for restoration later.
|
||||
original_physical_ideal_core_id = cpu_core_id;
|
||||
original_physical_ideal_core_id = core_id_;
|
||||
original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
|
||||
}
|
||||
}
|
||||
|
||||
// Update the pinned waiter list.
|
||||
ThreadQueueImplForKThreadSetProperty wait_queue_(kernel, std::addressof(pinned_waiter_list));
|
||||
{
|
||||
bool retry_update{};
|
||||
bool thread_is_pinned{};
|
||||
do {
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Don't do any further management if our termination has been requested.
|
||||
R_SUCCEED_IF(IsTerminationRequested());
|
||||
|
@ -570,12 +603,9 @@ ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
|
|||
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(),
|
||||
ResultTerminationRequested);
|
||||
|
||||
// Note that the thread was pinned.
|
||||
thread_is_pinned = true;
|
||||
|
||||
// Wait until the thread isn't pinned any more.
|
||||
pinned_waiter_list.push_back(GetCurrentThread(kernel));
|
||||
GetCurrentThread(kernel).SetState(ThreadState::Waiting);
|
||||
GetCurrentThread(kernel).BeginWait(std::addressof(wait_queue_));
|
||||
} else {
|
||||
// If the thread isn't pinned, release the scheduler lock and retry until it's
|
||||
// not current.
|
||||
|
@ -583,16 +613,6 @@ ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
|
|||
}
|
||||
}
|
||||
} while (retry_update);
|
||||
|
||||
// If the thread was pinned, it no longer is, and we should remove the current thread from
|
||||
// our waiter list.
|
||||
if (thread_is_pinned) {
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Remove from the list.
|
||||
pinned_waiter_list.erase(pinned_waiter_list.iterator_to(GetCurrentThread(kernel)));
|
||||
}
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
|
@ -641,15 +661,9 @@ void KThread::WaitCancel() {
|
|||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Check if we're waiting and cancellable.
|
||||
if (GetState() == ThreadState::Waiting && cancellable) {
|
||||
if (sleeping_queue != nullptr) {
|
||||
sleeping_queue->WakeupThread(this);
|
||||
wait_cancelled = true;
|
||||
} else {
|
||||
SetSyncedObject(nullptr, ResultCancelled);
|
||||
SetState(ThreadState::Runnable);
|
||||
wait_cancelled = false;
|
||||
}
|
||||
if (this->GetState() == ThreadState::Waiting && cancellable) {
|
||||
wait_cancelled = false;
|
||||
wait_queue->CancelWait(this, ResultCancelled, true);
|
||||
} else {
|
||||
// Otherwise, note that we cancelled a wait.
|
||||
wait_cancelled = true;
|
||||
|
@ -700,60 +714,59 @@ ResultCode KThread::SetActivity(Svc::ThreadActivity activity) {
|
|||
// Set the activity.
|
||||
{
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Verify our state.
|
||||
const auto cur_state = GetState();
|
||||
const auto cur_state = this->GetState();
|
||||
R_UNLESS((cur_state == ThreadState::Waiting || cur_state == ThreadState::Runnable),
|
||||
ResultInvalidState);
|
||||
|
||||
// Either pause or resume.
|
||||
if (activity == Svc::ThreadActivity::Paused) {
|
||||
// Verify that we're not suspended.
|
||||
R_UNLESS(!IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
|
||||
R_UNLESS(!this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
|
||||
|
||||
// Suspend.
|
||||
RequestSuspend(SuspendType::Thread);
|
||||
this->RequestSuspend(SuspendType::Thread);
|
||||
} else {
|
||||
ASSERT(activity == Svc::ThreadActivity::Runnable);
|
||||
|
||||
// Verify that we're suspended.
|
||||
R_UNLESS(IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
|
||||
R_UNLESS(this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
|
||||
|
||||
// Resume.
|
||||
Resume(SuspendType::Thread);
|
||||
this->Resume(SuspendType::Thread);
|
||||
}
|
||||
}
|
||||
|
||||
// If the thread is now paused, update the pinned waiter list.
|
||||
if (activity == Svc::ThreadActivity::Paused) {
|
||||
bool thread_is_pinned{};
|
||||
bool thread_is_current{};
|
||||
ThreadQueueImplForKThreadSetProperty wait_queue_(kernel,
|
||||
std::addressof(pinned_waiter_list));
|
||||
|
||||
bool thread_is_current;
|
||||
do {
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Don't do any further management if our termination has been requested.
|
||||
R_SUCCEED_IF(IsTerminationRequested());
|
||||
R_SUCCEED_IF(this->IsTerminationRequested());
|
||||
|
||||
// By default, treat the thread as not current.
|
||||
thread_is_current = false;
|
||||
|
||||
// Check whether the thread is pinned.
|
||||
if (GetStackParameters().is_pinned) {
|
||||
if (this->GetStackParameters().is_pinned) {
|
||||
// Verify that the current thread isn't terminating.
|
||||
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(),
|
||||
ResultTerminationRequested);
|
||||
|
||||
// Note that the thread was pinned and not current.
|
||||
thread_is_pinned = true;
|
||||
thread_is_current = false;
|
||||
|
||||
// Wait until the thread isn't pinned any more.
|
||||
pinned_waiter_list.push_back(GetCurrentThread(kernel));
|
||||
GetCurrentThread(kernel).SetState(ThreadState::Waiting);
|
||||
GetCurrentThread(kernel).BeginWait(std::addressof(wait_queue_));
|
||||
} else {
|
||||
// Check if the thread is currently running.
|
||||
// If it is, we'll need to retry.
|
||||
thread_is_current = false;
|
||||
|
||||
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
|
||||
if (kernel.Scheduler(i).GetCurrentThread() == this) {
|
||||
thread_is_current = true;
|
||||
|
@ -762,16 +775,6 @@ ResultCode KThread::SetActivity(Svc::ThreadActivity activity) {
|
|||
}
|
||||
}
|
||||
} while (thread_is_current);
|
||||
|
||||
// If the thread was pinned, it no longer is, and we should remove the current thread from
|
||||
// our waiter list.
|
||||
if (thread_is_pinned) {
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Remove from the list.
|
||||
pinned_waiter_list.erase(pinned_waiter_list.iterator_to(GetCurrentThread(kernel)));
|
||||
}
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
|
@ -966,6 +969,9 @@ ResultCode KThread::Run() {
|
|||
|
||||
// Set our state and finish.
|
||||
SetState(ThreadState::Runnable);
|
||||
|
||||
DisableDispatch();
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
}
|
||||
|
@ -996,29 +1002,63 @@ ResultCode KThread::Sleep(s64 timeout) {
|
|||
ASSERT(this == GetCurrentThreadPointer(kernel));
|
||||
ASSERT(timeout > 0);
|
||||
|
||||
ThreadQueueImplForKThreadSleep wait_queue_(kernel);
|
||||
{
|
||||
// Setup the scheduling lock and sleep.
|
||||
KScopedSchedulerLockAndSleep slp{kernel, this, timeout};
|
||||
KScopedSchedulerLockAndSleep slp(kernel, this, timeout);
|
||||
|
||||
// Check if the thread should terminate.
|
||||
if (IsTerminationRequested()) {
|
||||
if (this->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Mark the thread as waiting.
|
||||
SetState(ThreadState::Waiting);
|
||||
// Wait for the sleep to end.
|
||||
this->BeginWait(std::addressof(wait_queue_));
|
||||
SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep);
|
||||
}
|
||||
|
||||
// The lock/sleep is done.
|
||||
|
||||
// Cancel the timer.
|
||||
kernel.TimeManager().UnscheduleTimeEvent(this);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KThread::BeginWait(KThreadQueue* queue) {
|
||||
// Set our state as waiting.
|
||||
SetState(ThreadState::Waiting);
|
||||
|
||||
// Set our wait queue.
|
||||
wait_queue = queue;
|
||||
}
|
||||
|
||||
void KThread::NotifyAvailable(KSynchronizationObject* signaled_object, ResultCode wait_result_) {
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// If we're waiting, notify our queue that we're available.
|
||||
if (GetState() == ThreadState::Waiting) {
|
||||
wait_queue->NotifyAvailable(this, signaled_object, wait_result_);
|
||||
}
|
||||
}
|
||||
|
||||
void KThread::EndWait(ResultCode wait_result_) {
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// If we're waiting, notify our queue that we're available.
|
||||
if (GetState() == ThreadState::Waiting) {
|
||||
wait_queue->EndWait(this, wait_result_);
|
||||
}
|
||||
}
|
||||
|
||||
void KThread::CancelWait(ResultCode wait_result_, bool cancel_timer_task) {
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// If we're waiting, notify our queue that we're available.
|
||||
if (GetState() == ThreadState::Waiting) {
|
||||
wait_queue->CancelWait(this, wait_result_, cancel_timer_task);
|
||||
}
|
||||
}
|
||||
|
||||
void KThread::SetState(ThreadState state) {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
|
@ -1050,4 +1090,26 @@ s32 GetCurrentCoreId(KernelCore& kernel) {
|
|||
return GetCurrentThread(kernel).GetCurrentCore();
|
||||
}
|
||||
|
||||
KScopedDisableDispatch::~KScopedDisableDispatch() {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Skip the reschedule if single-core, as dispatch tracking is disabled here.
|
||||
if (!Settings::values.use_multi_core.GetValue()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (GetCurrentThread(kernel).GetDisableDispatchCount() <= 1) {
|
||||
auto scheduler = kernel.CurrentScheduler();
|
||||
|
||||
if (scheduler) {
|
||||
scheduler->RescheduleCurrentCore();
|
||||
}
|
||||
} else {
|
||||
GetCurrentThread(kernel).EnableDispatch();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
|
|
@ -48,6 +48,7 @@ enum class ThreadType : u32 {
|
|||
Kernel = 1,
|
||||
HighPriority = 2,
|
||||
User = 3,
|
||||
Dummy = 100, // Special thread type for emulation purposes only
|
||||
};
|
||||
DECLARE_ENUM_FLAG_OPERATORS(ThreadType);
|
||||
|
||||
|
@ -161,8 +162,6 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
void Wakeup();
|
||||
|
||||
void SetBasePriority(s32 value);
|
||||
|
||||
[[nodiscard]] ResultCode Run();
|
||||
|
@ -197,13 +196,19 @@ public:
|
|||
|
||||
void Suspend();
|
||||
|
||||
void SetSyncedObject(KSynchronizationObject* obj, ResultCode wait_res) {
|
||||
synced_object = obj;
|
||||
constexpr void SetSyncedIndex(s32 index) {
|
||||
synced_index = index;
|
||||
}
|
||||
|
||||
[[nodiscard]] constexpr s32 GetSyncedIndex() const {
|
||||
return synced_index;
|
||||
}
|
||||
|
||||
constexpr void SetWaitResult(ResultCode wait_res) {
|
||||
wait_result = wait_res;
|
||||
}
|
||||
|
||||
[[nodiscard]] ResultCode GetWaitResult(KSynchronizationObject** out) const {
|
||||
*out = synced_object;
|
||||
[[nodiscard]] constexpr ResultCode GetWaitResult() const {
|
||||
return wait_result;
|
||||
}
|
||||
|
||||
|
@ -374,6 +379,8 @@ public:
|
|||
|
||||
[[nodiscard]] bool IsSignaled() const override;
|
||||
|
||||
void OnTimer();
|
||||
|
||||
static void PostDestroy(uintptr_t arg);
|
||||
|
||||
[[nodiscard]] static ResultCode InitializeDummyThread(KThread* thread);
|
||||
|
@ -446,20 +453,39 @@ public:
|
|||
return per_core_priority_queue_entry[core];
|
||||
}
|
||||
|
||||
void SetSleepingQueue(KThreadQueue* q) {
|
||||
sleeping_queue = q;
|
||||
[[nodiscard]] bool IsKernelThread() const {
|
||||
return GetActiveCore() == 3;
|
||||
}
|
||||
|
||||
[[nodiscard]] bool IsDispatchTrackingDisabled() const {
|
||||
return is_single_core || IsKernelThread();
|
||||
}
|
||||
|
||||
[[nodiscard]] s32 GetDisableDispatchCount() const {
|
||||
if (IsDispatchTrackingDisabled()) {
|
||||
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
|
||||
return 1;
|
||||
}
|
||||
|
||||
return this->GetStackParameters().disable_count;
|
||||
}
|
||||
|
||||
void DisableDispatch() {
|
||||
if (IsDispatchTrackingDisabled()) {
|
||||
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
|
||||
this->GetStackParameters().disable_count++;
|
||||
}
|
||||
|
||||
void EnableDispatch() {
|
||||
if (IsDispatchTrackingDisabled()) {
|
||||
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() > 0);
|
||||
this->GetStackParameters().disable_count--;
|
||||
}
|
||||
|
@ -573,6 +599,15 @@ public:
|
|||
address_key_value = val;
|
||||
}
|
||||
|
||||
void ClearWaitQueue() {
|
||||
wait_queue = nullptr;
|
||||
}
|
||||
|
||||
void BeginWait(KThreadQueue* queue);
|
||||
void NotifyAvailable(KSynchronizationObject* signaled_object, ResultCode wait_result_);
|
||||
void EndWait(ResultCode wait_result_);
|
||||
void CancelWait(ResultCode wait_result_, bool cancel_timer_task);
|
||||
|
||||
[[nodiscard]] bool HasWaiters() const {
|
||||
return !waiter_list.empty();
|
||||
}
|
||||
|
@ -667,7 +702,6 @@ private:
|
|||
KAffinityMask physical_affinity_mask{};
|
||||
u64 thread_id{};
|
||||
std::atomic<s64> cpu_time{};
|
||||
KSynchronizationObject* synced_object{};
|
||||
VAddr address_key{};
|
||||
KProcess* parent{};
|
||||
VAddr kernel_stack_top{};
|
||||
|
@ -677,13 +711,14 @@ private:
|
|||
s64 schedule_count{};
|
||||
s64 last_scheduled_tick{};
|
||||
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> per_core_priority_queue_entry{};
|
||||
KThreadQueue* sleeping_queue{};
|
||||
KThreadQueue* wait_queue{};
|
||||
WaiterList waiter_list{};
|
||||
WaiterList pinned_waiter_list{};
|
||||
KThread* lock_owner{};
|
||||
u32 address_key_value{};
|
||||
u32 suspend_request_flags{};
|
||||
u32 suspend_allowed_flags{};
|
||||
s32 synced_index{};
|
||||
ResultCode wait_result{ResultSuccess};
|
||||
s32 base_priority{};
|
||||
s32 physical_ideal_core_id{};
|
||||
|
@ -708,6 +743,7 @@ private:
|
|||
|
||||
// For emulation
|
||||
std::shared_ptr<Common::Fiber> host_context{};
|
||||
bool is_single_core{};
|
||||
|
||||
// For debugging
|
||||
std::vector<KSynchronizationObject*> wait_objects_for_debugging;
|
||||
|
@ -752,4 +788,20 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
class KScopedDisableDispatch {
|
||||
public:
|
||||
[[nodiscard]] explicit KScopedDisableDispatch(KernelCore& kernel_) : kernel{kernel_} {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
GetCurrentThread(kernel).DisableDispatch();
|
||||
}
|
||||
|
||||
~KScopedDisableDispatch();
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
|
51
src/core/hle/kernel/k_thread_queue.cpp
Normal file
51
src/core/hle/kernel/k_thread_queue.cpp
Normal file
|
@ -0,0 +1,51 @@
|
|||
// Copyright 2021 yuzu Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
void KThreadQueue::NotifyAvailable([[maybe_unused]] KThread* waiting_thread,
|
||||
[[maybe_unused]] KSynchronizationObject* signaled_object,
|
||||
[[maybe_unused]] ResultCode wait_result) {}
|
||||
|
||||
void KThreadQueue::EndWait(KThread* waiting_thread, ResultCode wait_result) {
|
||||
// Set the thread's wait result.
|
||||
waiting_thread->SetWaitResult(wait_result);
|
||||
|
||||
// Set the thread as runnable.
|
||||
waiting_thread->SetState(ThreadState::Runnable);
|
||||
|
||||
// Clear the thread's wait queue.
|
||||
waiting_thread->ClearWaitQueue();
|
||||
|
||||
// Cancel the thread task.
|
||||
kernel.TimeManager().UnscheduleTimeEvent(waiting_thread);
|
||||
}
|
||||
|
||||
void KThreadQueue::CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task) {
|
||||
// Set the thread's wait result.
|
||||
waiting_thread->SetWaitResult(wait_result);
|
||||
|
||||
// Set the thread as runnable.
|
||||
waiting_thread->SetState(ThreadState::Runnable);
|
||||
|
||||
// Clear the thread's wait queue.
|
||||
waiting_thread->ClearWaitQueue();
|
||||
|
||||
// Cancel the thread task.
|
||||
if (cancel_timer_task) {
|
||||
kernel.TimeManager().UnscheduleTimeEvent(waiting_thread);
|
||||
}
|
||||
}
|
||||
|
||||
void KThreadQueueWithoutEndWait::EndWait([[maybe_unused]] KThread* waiting_thread,
|
||||
[[maybe_unused]] ResultCode wait_result) {}
|
||||
|
||||
} // namespace Kernel
|
|
@ -4,6 +4,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
@ -11,71 +12,24 @@ namespace Kernel {
|
|||
class KThreadQueue {
|
||||
public:
|
||||
explicit KThreadQueue(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
virtual ~KThreadQueue() = default;
|
||||
|
||||
bool IsEmpty() const {
|
||||
return wait_list.empty();
|
||||
}
|
||||
|
||||
KThread::WaiterList::iterator begin() {
|
||||
return wait_list.begin();
|
||||
}
|
||||
KThread::WaiterList::iterator end() {
|
||||
return wait_list.end();
|
||||
}
|
||||
|
||||
bool SleepThread(KThread* t) {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// If the thread needs terminating, don't enqueue it.
|
||||
if (t->IsTerminationRequested()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Set the thread's queue and mark it as waiting.
|
||||
t->SetSleepingQueue(this);
|
||||
t->SetState(ThreadState::Waiting);
|
||||
|
||||
// Add the thread to the queue.
|
||||
wait_list.push_back(*t);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void WakeupThread(KThread* t) {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Remove the thread from the queue.
|
||||
wait_list.erase(wait_list.iterator_to(*t));
|
||||
|
||||
// Mark the thread as no longer sleeping.
|
||||
t->SetState(ThreadState::Runnable);
|
||||
t->SetSleepingQueue(nullptr);
|
||||
}
|
||||
|
||||
KThread* WakeupFrontThread() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (wait_list.empty()) {
|
||||
return nullptr;
|
||||
} else {
|
||||
// Remove the thread from the queue.
|
||||
auto it = wait_list.begin();
|
||||
KThread* thread = std::addressof(*it);
|
||||
wait_list.erase(it);
|
||||
|
||||
ASSERT(thread->GetState() == ThreadState::Waiting);
|
||||
|
||||
// Mark the thread as no longer sleeping.
|
||||
thread->SetState(ThreadState::Runnable);
|
||||
thread->SetSleepingQueue(nullptr);
|
||||
|
||||
return thread;
|
||||
}
|
||||
}
|
||||
virtual void NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
|
||||
ResultCode wait_result);
|
||||
virtual void EndWait(KThread* waiting_thread, ResultCode wait_result);
|
||||
virtual void CancelWait(KThread* waiting_thread, ResultCode wait_result,
|
||||
bool cancel_timer_task);
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
KThread::WaiterList wait_list{};
|
||||
};
|
||||
|
||||
class KThreadQueueWithoutEndWait : public KThreadQueue {
|
||||
public:
|
||||
explicit KThreadQueueWithoutEndWait(KernelCore& kernel_) : KThreadQueue(kernel_) {}
|
||||
|
||||
void EndWait(KThread* waiting_thread, ResultCode wait_result) override final;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
#include "common/assert.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/microprofile.h"
|
||||
#include "common/scope_exit.h"
|
||||
#include "common/thread.h"
|
||||
#include "common/thread_worker.h"
|
||||
#include "core/arm/arm_interface.h"
|
||||
|
@ -83,12 +84,16 @@ struct KernelCore::Impl {
|
|||
}
|
||||
|
||||
void InitializeCores() {
|
||||
for (auto& core : cores) {
|
||||
core.Initialize(current_process->Is64BitProcess());
|
||||
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
||||
cores[core_id].Initialize(current_process->Is64BitProcess());
|
||||
system.Memory().SetCurrentPageTable(*current_process, core_id);
|
||||
}
|
||||
}
|
||||
|
||||
void Shutdown() {
|
||||
is_shutting_down.store(true, std::memory_order_relaxed);
|
||||
SCOPE_EXIT({ is_shutting_down.store(false, std::memory_order_relaxed); });
|
||||
|
||||
process_list.clear();
|
||||
|
||||
// Close all open server ports.
|
||||
|
@ -123,15 +128,6 @@ struct KernelCore::Impl {
|
|||
next_user_process_id = KProcess::ProcessIDMin;
|
||||
next_thread_id = 1;
|
||||
|
||||
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
||||
if (suspend_threads[core_id]) {
|
||||
suspend_threads[core_id]->Close();
|
||||
suspend_threads[core_id] = nullptr;
|
||||
}
|
||||
|
||||
schedulers[core_id].reset();
|
||||
}
|
||||
|
||||
cores.clear();
|
||||
|
||||
global_handle_table->Finalize();
|
||||
|
@ -159,6 +155,16 @@ struct KernelCore::Impl {
|
|||
CleanupObject(time_shared_mem);
|
||||
CleanupObject(system_resource_limit);
|
||||
|
||||
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
||||
if (suspend_threads[core_id]) {
|
||||
suspend_threads[core_id]->Close();
|
||||
suspend_threads[core_id] = nullptr;
|
||||
}
|
||||
|
||||
schedulers[core_id]->Finalize();
|
||||
schedulers[core_id].reset();
|
||||
}
|
||||
|
||||
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
|
||||
next_host_thread_id = Core::Hardware::NUM_CPU_CORES;
|
||||
|
||||
|
@ -245,13 +251,11 @@ struct KernelCore::Impl {
|
|||
KScopedSchedulerLock lock(kernel);
|
||||
global_scheduler_context->PreemptThreads();
|
||||
}
|
||||
const auto time_interval = std::chrono::nanoseconds{
|
||||
Core::Timing::msToCycles(std::chrono::milliseconds(10))};
|
||||
const auto time_interval = std::chrono::nanoseconds{std::chrono::milliseconds(10)};
|
||||
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
|
||||
});
|
||||
|
||||
const auto time_interval =
|
||||
std::chrono::nanoseconds{Core::Timing::msToCycles(std::chrono::milliseconds(10))};
|
||||
const auto time_interval = std::chrono::nanoseconds{std::chrono::milliseconds(10)};
|
||||
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
|
||||
}
|
||||
|
||||
|
@ -267,14 +271,6 @@ struct KernelCore::Impl {
|
|||
|
||||
void MakeCurrentProcess(KProcess* process) {
|
||||
current_process = process;
|
||||
if (process == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
const u32 core_id = GetCurrentHostThreadID();
|
||||
if (core_id < Core::Hardware::NUM_CPU_CORES) {
|
||||
system.Memory().SetCurrentPageTable(*process, core_id);
|
||||
}
|
||||
}
|
||||
|
||||
static inline thread_local u32 host_thread_id = UINT32_MAX;
|
||||
|
@ -344,7 +340,16 @@ struct KernelCore::Impl {
|
|||
is_phantom_mode_for_singlecore = value;
|
||||
}
|
||||
|
||||
bool IsShuttingDown() const {
|
||||
return is_shutting_down.load(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
KThread* GetCurrentEmuThread() {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (IsShuttingDown()) {
|
||||
return {};
|
||||
}
|
||||
|
||||
const auto thread_id = GetCurrentHostThreadID();
|
||||
if (thread_id >= Core::Hardware::NUM_CPU_CORES) {
|
||||
return GetHostDummyThread();
|
||||
|
@ -760,6 +765,7 @@ struct KernelCore::Impl {
|
|||
std::vector<std::unique_ptr<KThread>> dummy_threads;
|
||||
|
||||
bool is_multicore{};
|
||||
std::atomic_bool is_shutting_down{};
|
||||
bool is_phantom_mode_for_singlecore{};
|
||||
u32 single_core_thread_id{};
|
||||
|
||||
|
@ -845,16 +851,20 @@ const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
|
|||
return impl->cores[id];
|
||||
}
|
||||
|
||||
size_t KernelCore::CurrentPhysicalCoreIndex() const {
|
||||
const u32 core_id = impl->GetCurrentHostThreadID();
|
||||
if (core_id >= Core::Hardware::NUM_CPU_CORES) {
|
||||
return Core::Hardware::NUM_CPU_CORES - 1;
|
||||
}
|
||||
return core_id;
|
||||
}
|
||||
|
||||
Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() {
|
||||
u32 core_id = impl->GetCurrentHostThreadID();
|
||||
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
||||
return impl->cores[core_id];
|
||||
return impl->cores[CurrentPhysicalCoreIndex()];
|
||||
}
|
||||
|
||||
const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const {
|
||||
u32 core_id = impl->GetCurrentHostThreadID();
|
||||
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
||||
return impl->cores[core_id];
|
||||
return impl->cores[CurrentPhysicalCoreIndex()];
|
||||
}
|
||||
|
||||
Kernel::KScheduler* KernelCore::CurrentScheduler() {
|
||||
|
@ -1057,6 +1067,9 @@ void KernelCore::Suspend(bool in_suspention) {
|
|||
impl->suspend_threads[core_id]->SetState(state);
|
||||
impl->suspend_threads[core_id]->SetWaitReasonForDebugging(
|
||||
ThreadWaitReasonForDebugging::Suspended);
|
||||
if (!should_suspend) {
|
||||
impl->suspend_threads[core_id]->DisableDispatch();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1065,19 +1078,21 @@ bool KernelCore::IsMulticore() const {
|
|||
return impl->is_multicore;
|
||||
}
|
||||
|
||||
bool KernelCore::IsShuttingDown() const {
|
||||
return impl->IsShuttingDown();
|
||||
}
|
||||
|
||||
void KernelCore::ExceptionalExit() {
|
||||
exception_exited = true;
|
||||
Suspend(true);
|
||||
}
|
||||
|
||||
void KernelCore::EnterSVCProfile() {
|
||||
std::size_t core = impl->GetCurrentHostThreadID();
|
||||
impl->svc_ticks[core] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC));
|
||||
impl->svc_ticks[CurrentPhysicalCoreIndex()] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC));
|
||||
}
|
||||
|
||||
void KernelCore::ExitSVCProfile() {
|
||||
std::size_t core = impl->GetCurrentHostThreadID();
|
||||
MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[core]);
|
||||
MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[CurrentPhysicalCoreIndex()]);
|
||||
}
|
||||
|
||||
std::weak_ptr<Kernel::ServiceThread> KernelCore::CreateServiceThread(const std::string& name) {
|
||||
|
|
|
@ -149,6 +149,9 @@ public:
|
|||
/// Gets the an instance of the respective physical CPU core.
|
||||
const Kernel::PhysicalCore& PhysicalCore(std::size_t id) const;
|
||||
|
||||
/// Gets the current physical core index for the running host thread.
|
||||
std::size_t CurrentPhysicalCoreIndex() const;
|
||||
|
||||
/// Gets the sole instance of the Scheduler at the current running core.
|
||||
Kernel::KScheduler* CurrentScheduler();
|
||||
|
||||
|
@ -272,6 +275,8 @@ public:
|
|||
|
||||
bool IsMulticore() const;
|
||||
|
||||
bool IsShuttingDown() const;
|
||||
|
||||
void EnterSVCProfile();
|
||||
|
||||
void ExitSVCProfile();
|
||||
|
|
|
@ -25,24 +25,27 @@ public:
|
|||
void QueueSyncRequest(KSession& session, std::shared_ptr<HLERequestContext>&& context);
|
||||
|
||||
private:
|
||||
std::vector<std::thread> threads;
|
||||
std::vector<std::jthread> threads;
|
||||
std::queue<std::function<void()>> requests;
|
||||
std::mutex queue_mutex;
|
||||
std::condition_variable condition;
|
||||
std::condition_variable_any condition;
|
||||
const std::string service_name;
|
||||
bool stop{};
|
||||
};
|
||||
|
||||
ServiceThread::Impl::Impl(KernelCore& kernel, std::size_t num_threads, const std::string& name)
|
||||
: service_name{name} {
|
||||
for (std::size_t i = 0; i < num_threads; ++i)
|
||||
threads.emplace_back([this, &kernel] {
|
||||
for (std::size_t i = 0; i < num_threads; ++i) {
|
||||
threads.emplace_back([this, &kernel](std::stop_token stop_token) {
|
||||
Common::SetCurrentThreadName(std::string{"yuzu:HleService:" + service_name}.c_str());
|
||||
|
||||
// Wait for first request before trying to acquire a render context
|
||||
{
|
||||
std::unique_lock lock{queue_mutex};
|
||||
condition.wait(lock, [this] { return stop || !requests.empty(); });
|
||||
condition.wait(lock, stop_token, [this] { return !requests.empty(); });
|
||||
}
|
||||
|
||||
if (stop_token.stop_requested()) {
|
||||
return;
|
||||
}
|
||||
|
||||
kernel.RegisterHostThread();
|
||||
|
@ -52,10 +55,16 @@ ServiceThread::Impl::Impl(KernelCore& kernel, std::size_t num_threads, const std
|
|||
|
||||
{
|
||||
std::unique_lock lock{queue_mutex};
|
||||
condition.wait(lock, [this] { return stop || !requests.empty(); });
|
||||
if (stop || requests.empty()) {
|
||||
condition.wait(lock, stop_token, [this] { return !requests.empty(); });
|
||||
|
||||
if (stop_token.stop_requested()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (requests.empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
task = std::move(requests.front());
|
||||
requests.pop();
|
||||
}
|
||||
|
@ -63,6 +72,7 @@ ServiceThread::Impl::Impl(KernelCore& kernel, std::size_t num_threads, const std
|
|||
task();
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void ServiceThread::Impl::QueueSyncRequest(KSession& session,
|
||||
|
@ -88,12 +98,9 @@ void ServiceThread::Impl::QueueSyncRequest(KSession& session,
|
|||
}
|
||||
|
||||
ServiceThread::Impl::~Impl() {
|
||||
{
|
||||
std::unique_lock lock{queue_mutex};
|
||||
stop = true;
|
||||
}
|
||||
condition.notify_all();
|
||||
for (std::thread& thread : threads) {
|
||||
for (auto& thread : threads) {
|
||||
thread.request_stop();
|
||||
thread.join();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include "core/hle/kernel/k_shared_memory.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/k_transfer_memory.h"
|
||||
#include "core/hle/kernel/k_writable_event.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
|
@ -308,26 +309,29 @@ static ResultCode ConnectToNamedPort32(Core::System& system, Handle* out_handle,
|
|||
|
||||
/// Makes a blocking IPC call to an OS service.
|
||||
static ResultCode SendSyncRequest(Core::System& system, Handle handle) {
|
||||
|
||||
auto& kernel = system.Kernel();
|
||||
|
||||
// Create the wait queue.
|
||||
KThreadQueue wait_queue(kernel);
|
||||
|
||||
// Get the client session from its handle.
|
||||
KScopedAutoObject session =
|
||||
kernel.CurrentProcess()->GetHandleTable().GetObject<KClientSession>(handle);
|
||||
R_UNLESS(session.IsNotNull(), ResultInvalidHandle);
|
||||
|
||||
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
|
||||
|
||||
auto thread = kernel.CurrentScheduler()->GetCurrentThread();
|
||||
{
|
||||
KScopedSchedulerLock lock(kernel);
|
||||
thread->SetState(ThreadState::Waiting);
|
||||
thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
|
||||
|
||||
{
|
||||
KScopedAutoObject session =
|
||||
kernel.CurrentProcess()->GetHandleTable().GetObject<KClientSession>(handle);
|
||||
R_UNLESS(session.IsNotNull(), ResultInvalidHandle);
|
||||
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
|
||||
session->SendSyncRequest(thread, system.Memory(), system.CoreTiming());
|
||||
}
|
||||
// This is a synchronous request, so we should wait for our request to complete.
|
||||
GetCurrentThread(kernel).BeginWait(std::addressof(wait_queue));
|
||||
GetCurrentThread(kernel).SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
|
||||
session->SendSyncRequest(&GetCurrentThread(kernel), system.Memory(), system.CoreTiming());
|
||||
}
|
||||
|
||||
KSynchronizationObject* dummy{};
|
||||
return thread->GetWaitResult(std::addressof(dummy));
|
||||
return thread->GetWaitResult();
|
||||
}
|
||||
|
||||
static ResultCode SendSyncRequest32(Core::System& system, Handle handle) {
|
||||
|
@ -874,7 +878,7 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, Handle
|
|||
const u64 thread_ticks = current_thread->GetCpuTime();
|
||||
|
||||
out_ticks = thread_ticks + (core_timing.GetCPUTicks() - prev_ctx_ticks);
|
||||
} else if (same_thread && info_sub_id == system.CurrentCoreIndex()) {
|
||||
} else if (same_thread && info_sub_id == system.Kernel().CurrentPhysicalCoreIndex()) {
|
||||
out_ticks = core_timing.GetCPUTicks() - prev_ctx_ticks;
|
||||
}
|
||||
|
||||
|
@ -888,7 +892,8 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, Handle
|
|||
return ResultInvalidHandle;
|
||||
}
|
||||
|
||||
if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id != system.CurrentCoreIndex()) {
|
||||
if (info_sub_id != 0xFFFFFFFFFFFFFFFF &&
|
||||
info_sub_id != system.Kernel().CurrentPhysicalCoreIndex()) {
|
||||
LOG_ERROR(Kernel_SVC, "Core is not the current core, got {}", info_sub_id);
|
||||
return ResultInvalidCombination;
|
||||
}
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/core_timing.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
|
||||
|
@ -15,7 +16,10 @@ TimeManager::TimeManager(Core::System& system_) : system{system_} {
|
|||
Core::Timing::CreateEvent("Kernel::TimeManagerCallback",
|
||||
[this](std::uintptr_t thread_handle, std::chrono::nanoseconds) {
|
||||
KThread* thread = reinterpret_cast<KThread*>(thread_handle);
|
||||
thread->Wakeup();
|
||||
{
|
||||
KScopedSchedulerLock sl(system.Kernel());
|
||||
thread->OnTimer();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue