mirror of
https://github.com/yuzu-emu/yuzu-mainline.git
synced 2024-12-23 08:05:43 +00:00
Merge pull request #5121 from bunnei/optimize-core-timing
core: Optimize core timing utility functions to avoid unnecessary math
This commit is contained in:
commit
6be0975bf2
|
@ -168,7 +168,6 @@ add_library(common STATIC
|
||||||
time_zone.cpp
|
time_zone.cpp
|
||||||
time_zone.h
|
time_zone.h
|
||||||
tree.h
|
tree.h
|
||||||
uint128.cpp
|
|
||||||
uint128.h
|
uint128.h
|
||||||
uuid.cpp
|
uuid.cpp
|
||||||
uuid.h
|
uuid.h
|
||||||
|
|
|
@ -1,71 +0,0 @@
|
||||||
// Copyright 2019 yuzu Emulator Project
|
|
||||||
// Licensed under GPLv2 or any later version
|
|
||||||
// Refer to the license.txt file included.
|
|
||||||
|
|
||||||
#ifdef _MSC_VER
|
|
||||||
#include <intrin.h>
|
|
||||||
|
|
||||||
#pragma intrinsic(_umul128)
|
|
||||||
#pragma intrinsic(_udiv128)
|
|
||||||
#endif
|
|
||||||
#include <cstring>
|
|
||||||
#include "common/uint128.h"
|
|
||||||
|
|
||||||
namespace Common {
|
|
||||||
|
|
||||||
#ifdef _MSC_VER
|
|
||||||
|
|
||||||
u64 MultiplyAndDivide64(u64 a, u64 b, u64 d) {
|
|
||||||
u128 r{};
|
|
||||||
r[0] = _umul128(a, b, &r[1]);
|
|
||||||
u64 remainder;
|
|
||||||
#if _MSC_VER < 1923
|
|
||||||
return udiv128(r[1], r[0], d, &remainder);
|
|
||||||
#else
|
|
||||||
return _udiv128(r[1], r[0], d, &remainder);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
u64 MultiplyAndDivide64(u64 a, u64 b, u64 d) {
|
|
||||||
const u64 diva = a / d;
|
|
||||||
const u64 moda = a % d;
|
|
||||||
const u64 divb = b / d;
|
|
||||||
const u64 modb = b % d;
|
|
||||||
return diva * b + moda * divb + moda * modb / d;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
u128 Multiply64Into128(u64 a, u64 b) {
|
|
||||||
u128 result;
|
|
||||||
#ifdef _MSC_VER
|
|
||||||
result[0] = _umul128(a, b, &result[1]);
|
|
||||||
#else
|
|
||||||
unsigned __int128 tmp = a;
|
|
||||||
tmp *= b;
|
|
||||||
std::memcpy(&result, &tmp, sizeof(u128));
|
|
||||||
#endif
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor) {
|
|
||||||
u64 remainder = dividend[0] % divisor;
|
|
||||||
u64 accum = dividend[0] / divisor;
|
|
||||||
if (dividend[1] == 0)
|
|
||||||
return {accum, remainder};
|
|
||||||
// We ignore dividend[1] / divisor as that overflows
|
|
||||||
const u64 first_segment = (dividend[1] % divisor) << 32;
|
|
||||||
accum += (first_segment / divisor) << 32;
|
|
||||||
const u64 second_segment = (first_segment % divisor) << 32;
|
|
||||||
accum += (second_segment / divisor);
|
|
||||||
remainder += second_segment % divisor;
|
|
||||||
if (remainder >= divisor) {
|
|
||||||
accum++;
|
|
||||||
remainder -= divisor;
|
|
||||||
}
|
|
||||||
return {accum, remainder};
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace Common
|
|
|
@ -4,19 +4,98 @@
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstring>
|
||||||
#include <utility>
|
#include <utility>
|
||||||
|
|
||||||
|
#ifdef _MSC_VER
|
||||||
|
#include <intrin.h>
|
||||||
|
#pragma intrinsic(__umulh)
|
||||||
|
#pragma intrinsic(_umul128)
|
||||||
|
#pragma intrinsic(_udiv128)
|
||||||
|
#else
|
||||||
|
#include <x86intrin.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
#include "common/common_types.h"
|
#include "common/common_types.h"
|
||||||
|
|
||||||
namespace Common {
|
namespace Common {
|
||||||
|
|
||||||
// This function multiplies 2 u64 values and divides it by a u64 value.
|
// This function multiplies 2 u64 values and divides it by a u64 value.
|
||||||
[[nodiscard]] u64 MultiplyAndDivide64(u64 a, u64 b, u64 d);
|
[[nodiscard]] static inline u64 MultiplyAndDivide64(u64 a, u64 b, u64 d) {
|
||||||
|
#ifdef _MSC_VER
|
||||||
|
u128 r{};
|
||||||
|
r[0] = _umul128(a, b, &r[1]);
|
||||||
|
u64 remainder;
|
||||||
|
#if _MSC_VER < 1923
|
||||||
|
return udiv128(r[1], r[0], d, &remainder);
|
||||||
|
#else
|
||||||
|
return _udiv128(r[1], r[0], d, &remainder);
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
const u64 diva = a / d;
|
||||||
|
const u64 moda = a % d;
|
||||||
|
const u64 divb = b / d;
|
||||||
|
const u64 modb = b % d;
|
||||||
|
return diva * b + moda * divb + moda * modb / d;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
// This function multiplies 2 u64 values and produces a u128 value;
|
// This function multiplies 2 u64 values and produces a u128 value;
|
||||||
[[nodiscard]] u128 Multiply64Into128(u64 a, u64 b);
|
[[nodiscard]] static inline u128 Multiply64Into128(u64 a, u64 b) {
|
||||||
|
u128 result;
|
||||||
|
#ifdef _MSC_VER
|
||||||
|
result[0] = _umul128(a, b, &result[1]);
|
||||||
|
#else
|
||||||
|
unsigned __int128 tmp = a;
|
||||||
|
tmp *= b;
|
||||||
|
std::memcpy(&result, &tmp, sizeof(u128));
|
||||||
|
#endif
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
// This function divides a u128 by a u32 value and produces two u64 values:
|
[[nodiscard]] static inline u64 GetFixedPoint64Factor(u64 numerator, u64 divisor) {
|
||||||
// the result of division and the remainder
|
#ifdef __SIZEOF_INT128__
|
||||||
[[nodiscard]] std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor);
|
const auto base = static_cast<unsigned __int128>(numerator) << 64ULL;
|
||||||
|
return static_cast<u64>(base / divisor);
|
||||||
|
#elif defined(_M_X64) || defined(_M_ARM64)
|
||||||
|
std::array<u64, 2> r = {0, numerator};
|
||||||
|
u64 remainder;
|
||||||
|
#if _MSC_VER < 1923
|
||||||
|
return udiv128(r[1], r[0], divisor, &remainder);
|
||||||
|
#else
|
||||||
|
return _udiv128(r[1], r[0], divisor, &remainder);
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
// This one is bit more inaccurate.
|
||||||
|
return MultiplyAndDivide64(std::numeric_limits<u64>::max(), numerator, divisor);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] static inline u64 MultiplyHigh(u64 a, u64 b) {
|
||||||
|
#ifdef __SIZEOF_INT128__
|
||||||
|
return (static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b)) >> 64;
|
||||||
|
#elif defined(_M_X64) || defined(_M_ARM64)
|
||||||
|
return __umulh(a, b); // MSVC
|
||||||
|
#else
|
||||||
|
// Generic fallback
|
||||||
|
const u64 a_lo = u32(a);
|
||||||
|
const u64 a_hi = a >> 32;
|
||||||
|
const u64 b_lo = u32(b);
|
||||||
|
const u64 b_hi = b >> 32;
|
||||||
|
|
||||||
|
const u64 a_x_b_hi = a_hi * b_hi;
|
||||||
|
const u64 a_x_b_mid = a_hi * b_lo;
|
||||||
|
const u64 b_x_a_mid = b_hi * a_lo;
|
||||||
|
const u64 a_x_b_lo = a_lo * b_lo;
|
||||||
|
|
||||||
|
const u64 carry_bit = (static_cast<u64>(static_cast<u32>(a_x_b_mid)) +
|
||||||
|
static_cast<u64>(static_cast<u32>(b_x_a_mid)) + (a_x_b_lo >> 32)) >>
|
||||||
|
32;
|
||||||
|
|
||||||
|
const u64 multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit;
|
||||||
|
|
||||||
|
return multhi;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace Common
|
} // namespace Common
|
||||||
|
|
|
@ -2,6 +2,8 @@
|
||||||
// Licensed under GPLv2 or any later version
|
// Licensed under GPLv2 or any later version
|
||||||
// Refer to the license.txt file included.
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
|
||||||
#include "common/uint128.h"
|
#include "common/uint128.h"
|
||||||
#include "common/wall_clock.h"
|
#include "common/wall_clock.h"
|
||||||
|
|
||||||
|
@ -18,7 +20,9 @@ using base_time_point = std::chrono::time_point<base_timer>;
|
||||||
class StandardWallClock final : public WallClock {
|
class StandardWallClock final : public WallClock {
|
||||||
public:
|
public:
|
||||||
explicit StandardWallClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_)
|
explicit StandardWallClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_)
|
||||||
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, false) {
|
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, false),
|
||||||
|
emulated_clock_factor{GetFixedPoint64Factor(emulated_clock_frequency, 1000000000)},
|
||||||
|
emulated_cpu_factor{GetFixedPoint64Factor(emulated_cpu_frequency, 1000000000)} {
|
||||||
start_time = base_timer::now();
|
start_time = base_timer::now();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -41,16 +45,11 @@ public:
|
||||||
}
|
}
|
||||||
|
|
||||||
u64 GetClockCycles() override {
|
u64 GetClockCycles() override {
|
||||||
std::chrono::nanoseconds time_now = GetTimeNS();
|
return MultiplyHigh(GetTimeNS().count(), emulated_clock_factor);
|
||||||
const u128 temporary =
|
|
||||||
Common::Multiply64Into128(time_now.count(), emulated_clock_frequency);
|
|
||||||
return Common::Divide128On32(temporary, 1000000000).first;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
u64 GetCPUCycles() override {
|
u64 GetCPUCycles() override {
|
||||||
std::chrono::nanoseconds time_now = GetTimeNS();
|
return MultiplyHigh(GetTimeNS().count(), emulated_cpu_factor);
|
||||||
const u128 temporary = Common::Multiply64Into128(time_now.count(), emulated_cpu_frequency);
|
|
||||||
return Common::Divide128On32(temporary, 1000000000).first;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void Pause([[maybe_unused]] bool is_paused) override {
|
void Pause([[maybe_unused]] bool is_paused) override {
|
||||||
|
@ -59,6 +58,8 @@ public:
|
||||||
|
|
||||||
private:
|
private:
|
||||||
base_time_point start_time;
|
base_time_point start_time;
|
||||||
|
const u64 emulated_clock_factor;
|
||||||
|
const u64 emulated_cpu_factor;
|
||||||
};
|
};
|
||||||
|
|
||||||
#ifdef ARCHITECTURE_x86_64
|
#ifdef ARCHITECTURE_x86_64
|
||||||
|
|
|
@ -8,68 +8,10 @@
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
#include <thread>
|
#include <thread>
|
||||||
|
|
||||||
#ifdef _MSC_VER
|
|
||||||
#include <intrin.h>
|
|
||||||
|
|
||||||
#pragma intrinsic(__umulh)
|
|
||||||
#pragma intrinsic(_udiv128)
|
|
||||||
#else
|
|
||||||
#include <x86intrin.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "common/atomic_ops.h"
|
#include "common/atomic_ops.h"
|
||||||
#include "common/uint128.h"
|
#include "common/uint128.h"
|
||||||
#include "common/x64/native_clock.h"
|
#include "common/x64/native_clock.h"
|
||||||
|
|
||||||
namespace {
|
|
||||||
|
|
||||||
[[nodiscard]] u64 GetFixedPoint64Factor(u64 numerator, u64 divisor) {
|
|
||||||
#ifdef __SIZEOF_INT128__
|
|
||||||
const auto base = static_cast<unsigned __int128>(numerator) << 64ULL;
|
|
||||||
return static_cast<u64>(base / divisor);
|
|
||||||
#elif defined(_M_X64) || defined(_M_ARM64)
|
|
||||||
std::array<u64, 2> r = {0, numerator};
|
|
||||||
u64 remainder;
|
|
||||||
#if _MSC_VER < 1923
|
|
||||||
return udiv128(r[1], r[0], divisor, &remainder);
|
|
||||||
#else
|
|
||||||
return _udiv128(r[1], r[0], divisor, &remainder);
|
|
||||||
#endif
|
|
||||||
#else
|
|
||||||
// This one is bit more inaccurate.
|
|
||||||
return MultiplyAndDivide64(std::numeric_limits<u64>::max(), numerator, divisor);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
[[nodiscard]] u64 MultiplyHigh(u64 a, u64 b) {
|
|
||||||
#ifdef __SIZEOF_INT128__
|
|
||||||
return (static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b)) >> 64;
|
|
||||||
#elif defined(_M_X64) || defined(_M_ARM64)
|
|
||||||
return __umulh(a, b); // MSVC
|
|
||||||
#else
|
|
||||||
// Generic fallback
|
|
||||||
const u64 a_lo = u32(a);
|
|
||||||
const u64 a_hi = a >> 32;
|
|
||||||
const u64 b_lo = u32(b);
|
|
||||||
const u64 b_hi = b >> 32;
|
|
||||||
|
|
||||||
const u64 a_x_b_hi = a_hi * b_hi;
|
|
||||||
const u64 a_x_b_mid = a_hi * b_lo;
|
|
||||||
const u64 b_x_a_mid = b_hi * a_lo;
|
|
||||||
const u64 a_x_b_lo = a_lo * b_lo;
|
|
||||||
|
|
||||||
const u64 carry_bit = (static_cast<u64>(static_cast<u32>(a_x_b_mid)) +
|
|
||||||
static_cast<u64>(static_cast<u32>(b_x_a_mid)) + (a_x_b_lo >> 32)) >>
|
|
||||||
32;
|
|
||||||
|
|
||||||
const u64 multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit;
|
|
||||||
|
|
||||||
return multhi;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
namespace Common {
|
namespace Common {
|
||||||
|
|
||||||
u64 EstimateRDTSCFrequency() {
|
u64 EstimateRDTSCFrequency() {
|
||||||
|
|
|
@ -19,7 +19,6 @@ add_library(core STATIC
|
||||||
core.h
|
core.h
|
||||||
core_timing.cpp
|
core_timing.cpp
|
||||||
core_timing.h
|
core_timing.h
|
||||||
core_timing_util.cpp
|
|
||||||
core_timing_util.h
|
core_timing_util.h
|
||||||
cpu_manager.cpp
|
cpu_manager.cpp
|
||||||
cpu_manager.h
|
cpu_manager.h
|
||||||
|
|
|
@ -1,84 +0,0 @@
|
||||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
|
||||||
// Licensed under GPLv2+
|
|
||||||
// Refer to the license.txt file included.
|
|
||||||
|
|
||||||
#include "core/core_timing_util.h"
|
|
||||||
|
|
||||||
#include <cinttypes>
|
|
||||||
#include <limits>
|
|
||||||
#include "common/logging/log.h"
|
|
||||||
#include "common/uint128.h"
|
|
||||||
#include "core/hardware_properties.h"
|
|
||||||
|
|
||||||
namespace Core::Timing {
|
|
||||||
|
|
||||||
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE;
|
|
||||||
|
|
||||||
s64 msToCycles(std::chrono::milliseconds ms) {
|
|
||||||
if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) {
|
|
||||||
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
|
|
||||||
return std::numeric_limits<s64>::max();
|
|
||||||
}
|
|
||||||
if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) {
|
|
||||||
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
|
|
||||||
return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000);
|
|
||||||
}
|
|
||||||
return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000;
|
|
||||||
}
|
|
||||||
|
|
||||||
s64 usToCycles(std::chrono::microseconds us) {
|
|
||||||
if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) {
|
|
||||||
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
|
|
||||||
return std::numeric_limits<s64>::max();
|
|
||||||
}
|
|
||||||
if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) {
|
|
||||||
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
|
|
||||||
return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000);
|
|
||||||
}
|
|
||||||
return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000;
|
|
||||||
}
|
|
||||||
|
|
||||||
s64 nsToCycles(std::chrono::nanoseconds ns) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE);
|
|
||||||
return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 msToClockCycles(std::chrono::milliseconds ns) {
|
|
||||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
|
|
||||||
return Common::Divide128On32(temp, 1000).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 usToClockCycles(std::chrono::microseconds ns) {
|
|
||||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
|
|
||||||
return Common::Divide128On32(temp, 1000000).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 nsToClockCycles(std::chrono::nanoseconds ns) {
|
|
||||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
|
|
||||||
return Common::Divide128On32(temp, 1000000000).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 CpuCyclesToClockCycles(u64 ticks) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
|
|
||||||
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::chrono::milliseconds CyclesToMs(s64 cycles) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000);
|
|
||||||
u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
|
||||||
return std::chrono::milliseconds(ms);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::chrono::nanoseconds CyclesToNs(s64 cycles) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000000000);
|
|
||||||
u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
|
||||||
return std::chrono::nanoseconds(ns);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::chrono::microseconds CyclesToUs(s64 cycles) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000000);
|
|
||||||
u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
|
||||||
return std::chrono::microseconds(us);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace Core::Timing
|
|
|
@ -1,24 +1,59 @@
|
||||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
// Copyright 2020 yuzu Emulator Project
|
||||||
// Licensed under GPLv2+
|
// Licensed under GPLv2 or any later version
|
||||||
// Refer to the license.txt file included.
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
|
|
||||||
#include "common/common_types.h"
|
#include "common/common_types.h"
|
||||||
|
#include "core/hardware_properties.h"
|
||||||
|
|
||||||
namespace Core::Timing {
|
namespace Core::Timing {
|
||||||
|
|
||||||
s64 msToCycles(std::chrono::milliseconds ms);
|
namespace detail {
|
||||||
s64 usToCycles(std::chrono::microseconds us);
|
constexpr u64 CNTFREQ_ADJUSTED = Hardware::CNTFREQ / 1000;
|
||||||
s64 nsToCycles(std::chrono::nanoseconds ns);
|
constexpr u64 BASE_CLOCK_RATE_ADJUSTED = Hardware::BASE_CLOCK_RATE / 1000;
|
||||||
u64 msToClockCycles(std::chrono::milliseconds ns);
|
} // namespace detail
|
||||||
u64 usToClockCycles(std::chrono::microseconds ns);
|
|
||||||
u64 nsToClockCycles(std::chrono::nanoseconds ns);
|
|
||||||
std::chrono::milliseconds CyclesToMs(s64 cycles);
|
|
||||||
std::chrono::nanoseconds CyclesToNs(s64 cycles);
|
|
||||||
std::chrono::microseconds CyclesToUs(s64 cycles);
|
|
||||||
|
|
||||||
u64 CpuCyclesToClockCycles(u64 ticks);
|
[[nodiscard]] constexpr s64 msToCycles(std::chrono::milliseconds ms) {
|
||||||
|
return ms.count() * detail::BASE_CLOCK_RATE_ADJUSTED;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr s64 usToCycles(std::chrono::microseconds us) {
|
||||||
|
return us.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr s64 nsToCycles(std::chrono::nanoseconds ns) {
|
||||||
|
return ns.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000000;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr u64 msToClockCycles(std::chrono::milliseconds ms) {
|
||||||
|
return static_cast<u64>(ms.count()) * detail::CNTFREQ_ADJUSTED;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr u64 usToClockCycles(std::chrono::microseconds us) {
|
||||||
|
return us.count() * detail::CNTFREQ_ADJUSTED / 1000;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr u64 nsToClockCycles(std::chrono::nanoseconds ns) {
|
||||||
|
return ns.count() * detail::CNTFREQ_ADJUSTED / 1000000;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr u64 CpuCyclesToClockCycles(u64 ticks) {
|
||||||
|
return ticks * detail::CNTFREQ_ADJUSTED / detail::BASE_CLOCK_RATE_ADJUSTED;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr std::chrono::milliseconds CyclesToMs(s64 cycles) {
|
||||||
|
return std::chrono::milliseconds(cycles / detail::BASE_CLOCK_RATE_ADJUSTED);
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr std::chrono::nanoseconds CyclesToNs(s64 cycles) {
|
||||||
|
return std::chrono::nanoseconds(cycles * 1000000 / detail::BASE_CLOCK_RATE_ADJUSTED);
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr std::chrono::microseconds CyclesToUs(s64 cycles) {
|
||||||
|
return std::chrono::microseconds(cycles * 1000 / detail::BASE_CLOCK_RATE_ADJUSTED);
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace Core::Timing
|
} // namespace Core::Timing
|
||||||
|
|
Loading…
Reference in a new issue