operator+ for std::string creates an entirely new string, which is kind
of unnecessary here if we just want to append a null terminator to the
existing one.
Reduces the total amount of potential allocations that need to be done
in the logging path.
Now that we have all of the rearranging and proper structure sizes in
place, it's fairly trivial to implement svcGetThreadContext(). In the
64-bit case we can more or less just write out the context as is, minus
some minor value sanitizing. In the 32-bit case we'll need to clear out
the registers that wouldn't normally be accessible from a 32-bit
AArch32 exectuable (or process).
This will be necessary for the implementation of svcGetThreadContext(),
as the kernel checks whether or not the process that owns the thread
that has it context being retrieved is a 64-bit or 32-bit process.
If the process is 32-bit, then the upper 15 general-purpose registers
and upper 16 vector registers are cleared to zero (as AArch32 only has
15 GPRs and 16 128-bit vector registers. not 31 general-purpose
registers and 32 128-bit vector registers like AArch64).
Makes the public interface consistent in terms of how accesses are done
on a process object. It also makes it slightly nicer to reason about the
logic of the process class, as we don't want to expose everything to
external code.
Internally within the kernel, it also includes a member variable for the
floating-point status register, and TPIDR, so we should do the same here to match
it.
While we're at it, also fix up the size of the struct and add a static
assertion to ensure it always stays the correct size.
A process should never require being reference counted in this
situation. If the handle to a process is freed before this function is
called, it's definitely a bug with our lifetime management, so we can
put the requirement in place for the API that the process must be a
valid instance.
boost::static_pointer_cast for boost::intrusive_ptr (what SharedPtr is),
takes its parameter by const reference. Given that, it means that this
std::move doesn't actually do anything other than obscure what the
function's actual behavior is, so we can remove this. To clarify, this
would only do something if the parameter was either taking its argument
by value, by non-const ref, or by rvalue-reference.
Add asserts for compute shader dispatching, transform feedback being
enabled and alpha testing. These have in common that they'll probably break
rendering without logging.
The std::vector instances are already initially allocated with all
entries having these values, there's no need to loop through and fill
them with it again when they aren't modified.
auto x = 0;
auto-deduces x to be an int. This is undesirable when working with
unsigned values. It also causes sign conversion warnings. Instead, we
can make it a proper unsigned value with the correct width that the
following expressions operate on.
Ternary operators have a lower precedence than arithmetic operators, so
what was actually occurring here is "return (out + full) ? x : y" which most
definitely isn't intended, given we calculate out recursively above. We
were essentially doing a lot of work for nothing.
This can cause warnings about static constructors, and is also not ideal
performance-wise due to the indirection through std::function. This also
keeps the behavior itself separate from the surrounding code, which can
make it nicer to read, due to the size of the code.
Given these are only added to the class to allow those functions to
access the private constructor, it's a better approach to just make them
static functions in the interface, to make the dependency explicit.