yuzu-mainline/src/video_core/shader/shader_ir.cpp
2019-01-15 17:54:53 -03:00

444 lines
18 KiB
C++

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cmath>
#include <unordered_map>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Attribute;
using Tegra::Shader::Instruction;
using Tegra::Shader::IpaMode;
using Tegra::Shader::Pred;
using Tegra::Shader::PredCondition;
using Tegra::Shader::PredOperation;
using Tegra::Shader::Register;
Node ShaderIR::StoreNode(NodeData&& node_data) {
auto store = std::make_unique<NodeData>(node_data);
const Node node = store.get();
stored_nodes.push_back(std::move(store));
return node;
}
Node ShaderIR::Conditional(Node condition, std::vector<Node>&& code) {
return StoreNode(ConditionalNode(condition, std::move(code)));
}
Node ShaderIR::Comment(const std::string& text) {
return StoreNode(CommentNode(text));
}
Node ShaderIR::Immediate(u32 value) {
return StoreNode(ImmediateNode(value));
}
Node ShaderIR::GetRegister(Register reg) {
if (reg != Register::ZeroIndex) {
used_registers.insert(static_cast<u32>(reg));
}
return StoreNode(GprNode(reg));
}
Node ShaderIR::GetImmediate19(Instruction instr) {
return Immediate(instr.alu.GetImm20_19());
}
Node ShaderIR::GetImmediate32(Instruction instr) {
return Immediate(instr.alu.GetImm20_32());
}
Node ShaderIR::GetConstBuffer(u64 index_, u64 offset_) {
const auto index = static_cast<u32>(index_);
const auto offset = static_cast<u32>(offset_);
const auto [entry, is_new] = used_cbufs.try_emplace(index);
entry->second.MarkAsUsed(offset);
return StoreNode(CbufNode(index, Immediate(offset)));
}
Node ShaderIR::GetConstBufferIndirect(u64 index_, u64 offset_, Node node) {
const auto index = static_cast<u32>(index_);
const auto offset = static_cast<u32>(offset_);
const auto [entry, is_new] = used_cbufs.try_emplace(index);
entry->second.MarkAsUsedIndirect();
const Node final_offset = Operation(OperationCode::UAdd, NO_PRECISE, node, Immediate(offset));
return StoreNode(CbufNode(index, final_offset));
}
Node ShaderIR::GetPredicate(u64 pred_, bool negated) {
const auto pred = static_cast<Pred>(pred_);
if (pred != Pred::UnusedIndex && pred != Pred::NeverExecute) {
used_predicates.insert(pred);
}
return StoreNode(PredicateNode(pred, negated));
}
Node ShaderIR::GetPredicate(bool immediate) {
return GetPredicate(static_cast<u64>(immediate ? Pred::UnusedIndex : Pred::NeverExecute));
}
Node ShaderIR::GetInputAttribute(Attribute::Index index, u64 element,
const Tegra::Shader::IpaMode& input_mode, Node buffer) {
const auto [entry, is_new] =
used_input_attributes.emplace(std::make_pair(index, std::set<Tegra::Shader::IpaMode>{}));
entry->second.insert(input_mode);
return StoreNode(AbufNode(index, static_cast<u32>(element), input_mode, buffer));
}
Node ShaderIR::GetOutputAttribute(Attribute::Index index, u64 element, Node buffer) {
if (index == Attribute::Index::ClipDistances0123 ||
index == Attribute::Index::ClipDistances4567) {
const auto clip_index =
static_cast<u32>((index == Attribute::Index::ClipDistances4567 ? 1 : 0) + element);
used_clip_distances.at(clip_index) = true;
}
used_output_attributes.insert(index);
return StoreNode(AbufNode(index, static_cast<u32>(element), buffer));
}
Node ShaderIR::GetInternalFlag(InternalFlag flag, bool negated) {
const Node node = StoreNode(InternalFlagNode(flag));
if (negated) {
return Operation(OperationCode::LogicalNegate, node);
}
return node;
}
Node ShaderIR::GetLocalMemory(Node address) {
return StoreNode(LmemNode(address));
}
Node ShaderIR::GetTemporal(u32 id) {
return GetRegister(Register::ZeroIndex + 1 + id);
}
Node ShaderIR::GetOperandAbsNegFloat(Node value, bool absolute, bool negate) {
if (absolute) {
value = Operation(OperationCode::FAbsolute, NO_PRECISE, value);
}
if (negate) {
value = Operation(OperationCode::FNegate, NO_PRECISE, value);
}
return value;
}
Node ShaderIR::GetSaturatedFloat(Node value, bool saturate) {
if (!saturate) {
return value;
}
const Node positive_zero = Immediate(std::copysignf(0, 1));
const Node positive_one = Immediate(1.0f);
return Operation(OperationCode::FClamp, NO_PRECISE, value, positive_zero, positive_one);
}
Node ShaderIR::ConvertIntegerSize(Node value, Tegra::Shader::Register::Size size, bool is_signed) {
switch (size) {
case Register::Size::Byte:
value = SignedOperation(OperationCode::ILogicalShiftLeft, is_signed, NO_PRECISE, value,
Immediate(24));
value = SignedOperation(OperationCode::IArithmeticShiftRight, is_signed, NO_PRECISE, value,
Immediate(24));
return value;
case Register::Size::Short:
value = SignedOperation(OperationCode::ILogicalShiftLeft, is_signed, NO_PRECISE, value,
Immediate(16));
value = SignedOperation(OperationCode::IArithmeticShiftRight, is_signed, NO_PRECISE, value,
Immediate(16));
case Register::Size::Word:
// Default - do nothing
return value;
default:
UNREACHABLE_MSG("Unimplemented conversion size: {}", static_cast<u32>(size));
return value;
}
}
Node ShaderIR::GetOperandAbsNegInteger(Node value, bool absolute, bool negate, bool is_signed) {
if (!is_signed) {
// Absolute or negate on an unsigned is pointless
return value;
}
if (absolute) {
value = Operation(OperationCode::IAbsolute, NO_PRECISE, value);
}
if (negate) {
value = Operation(OperationCode::INegate, NO_PRECISE, value);
}
return value;
}
Node ShaderIR::UnpackHalfImmediate(Instruction instr, bool has_negation) {
const Node value = Immediate(instr.half_imm.PackImmediates());
if (!has_negation) {
return value;
}
const Node first_negate = GetPredicate(instr.half_imm.first_negate != 0);
const Node second_negate = GetPredicate(instr.half_imm.second_negate != 0);
return Operation(OperationCode::HNegate, HALF_NO_PRECISE, value, first_negate, second_negate);
}
Node ShaderIR::HalfMerge(Node dest, Node src, Tegra::Shader::HalfMerge merge) {
switch (merge) {
case Tegra::Shader::HalfMerge::H0_H1:
return src;
case Tegra::Shader::HalfMerge::F32:
return Operation(OperationCode::HMergeF32, src);
case Tegra::Shader::HalfMerge::Mrg_H0:
return Operation(OperationCode::HMergeH0, dest, src);
case Tegra::Shader::HalfMerge::Mrg_H1:
return Operation(OperationCode::HMergeH1, dest, src);
}
UNREACHABLE();
return src;
}
Node ShaderIR::GetOperandAbsNegHalf(Node value, bool absolute, bool negate) {
if (absolute) {
value = Operation(OperationCode::HAbsolute, HALF_NO_PRECISE, value);
}
if (negate) {
value = Operation(OperationCode::HNegate, HALF_NO_PRECISE, value, GetPredicate(true),
GetPredicate(true));
}
return value;
}
Node ShaderIR::GetPredicateComparisonFloat(PredCondition condition, Node op_a, Node op_b) {
static const std::unordered_map<PredCondition, OperationCode> PredicateComparisonTable = {
{PredCondition::LessThan, OperationCode::LogicalFLessThan},
{PredCondition::Equal, OperationCode::LogicalFEqual},
{PredCondition::LessEqual, OperationCode::LogicalFLessEqual},
{PredCondition::GreaterThan, OperationCode::LogicalFGreaterThan},
{PredCondition::NotEqual, OperationCode::LogicalFNotEqual},
{PredCondition::GreaterEqual, OperationCode::LogicalFGreaterEqual},
{PredCondition::LessThanWithNan, OperationCode::LogicalFLessThan},
{PredCondition::NotEqualWithNan, OperationCode::LogicalFNotEqual},
{PredCondition::LessEqualWithNan, OperationCode::LogicalFLessEqual},
{PredCondition::GreaterThanWithNan, OperationCode::LogicalFGreaterThan},
{PredCondition::GreaterEqualWithNan, OperationCode::LogicalFGreaterEqual}};
const auto comparison{PredicateComparisonTable.find(condition)};
UNIMPLEMENTED_IF_MSG(comparison == PredicateComparisonTable.end(),
"Unknown predicate comparison operation");
Node predicate = Operation(comparison->second, NO_PRECISE, op_a, op_b);
if (condition == PredCondition::LessThanWithNan ||
condition == PredCondition::NotEqualWithNan ||
condition == PredCondition::LessEqualWithNan ||
condition == PredCondition::GreaterThanWithNan ||
condition == PredCondition::GreaterEqualWithNan) {
predicate = Operation(OperationCode::LogicalOr, predicate,
Operation(OperationCode::LogicalFIsNan, op_a));
predicate = Operation(OperationCode::LogicalOr, predicate,
Operation(OperationCode::LogicalFIsNan, op_b));
}
return predicate;
}
Node ShaderIR::GetPredicateComparisonInteger(PredCondition condition, bool is_signed, Node op_a,
Node op_b) {
static const std::unordered_map<PredCondition, OperationCode> PredicateComparisonTable = {
{PredCondition::LessThan, OperationCode::LogicalILessThan},
{PredCondition::Equal, OperationCode::LogicalIEqual},
{PredCondition::LessEqual, OperationCode::LogicalILessEqual},
{PredCondition::GreaterThan, OperationCode::LogicalIGreaterThan},
{PredCondition::NotEqual, OperationCode::LogicalINotEqual},
{PredCondition::GreaterEqual, OperationCode::LogicalIGreaterEqual},
{PredCondition::LessThanWithNan, OperationCode::LogicalILessThan},
{PredCondition::NotEqualWithNan, OperationCode::LogicalINotEqual},
{PredCondition::LessEqualWithNan, OperationCode::LogicalILessEqual},
{PredCondition::GreaterThanWithNan, OperationCode::LogicalIGreaterThan},
{PredCondition::GreaterEqualWithNan, OperationCode::LogicalIGreaterEqual}};
const auto comparison{PredicateComparisonTable.find(condition)};
UNIMPLEMENTED_IF_MSG(comparison == PredicateComparisonTable.end(),
"Unknown predicate comparison operation");
Node predicate = SignedOperation(comparison->second, is_signed, NO_PRECISE, op_a, op_b);
UNIMPLEMENTED_IF_MSG(condition == PredCondition::LessThanWithNan ||
condition == PredCondition::NotEqualWithNan ||
condition == PredCondition::LessEqualWithNan ||
condition == PredCondition::GreaterThanWithNan ||
condition == PredCondition::GreaterEqualWithNan,
"NaN comparisons for integers are not implemented");
return predicate;
}
Node ShaderIR::GetPredicateComparisonHalf(Tegra::Shader::PredCondition condition,
const MetaHalfArithmetic& meta, Node op_a, Node op_b) {
UNIMPLEMENTED_IF_MSG(condition == PredCondition::LessThanWithNan ||
condition == PredCondition::NotEqualWithNan ||
condition == PredCondition::LessEqualWithNan ||
condition == PredCondition::GreaterThanWithNan ||
condition == PredCondition::GreaterEqualWithNan,
"Unimplemented NaN comparison for half floats");
static const std::unordered_map<PredCondition, OperationCode> PredicateComparisonTable = {
{PredCondition::LessThan, OperationCode::Logical2HLessThan},
{PredCondition::Equal, OperationCode::Logical2HEqual},
{PredCondition::LessEqual, OperationCode::Logical2HLessEqual},
{PredCondition::GreaterThan, OperationCode::Logical2HGreaterThan},
{PredCondition::NotEqual, OperationCode::Logical2HNotEqual},
{PredCondition::GreaterEqual, OperationCode::Logical2HGreaterEqual},
{PredCondition::LessThanWithNan, OperationCode::Logical2HLessThan},
{PredCondition::NotEqualWithNan, OperationCode::Logical2HNotEqual},
{PredCondition::LessEqualWithNan, OperationCode::Logical2HLessEqual},
{PredCondition::GreaterThanWithNan, OperationCode::Logical2HGreaterThan},
{PredCondition::GreaterEqualWithNan, OperationCode::Logical2HGreaterEqual}};
const auto comparison{PredicateComparisonTable.find(condition)};
UNIMPLEMENTED_IF_MSG(comparison == PredicateComparisonTable.end(),
"Unknown predicate comparison operation");
const Node predicate = Operation(comparison->second, meta, op_a, op_b);
return predicate;
}
OperationCode ShaderIR::GetPredicateCombiner(PredOperation operation) {
static const std::unordered_map<PredOperation, OperationCode> PredicateOperationTable = {
{PredOperation::And, OperationCode::LogicalAnd},
{PredOperation::Or, OperationCode::LogicalOr},
{PredOperation::Xor, OperationCode::LogicalXor},
};
const auto op = PredicateOperationTable.find(operation);
UNIMPLEMENTED_IF_MSG(op == PredicateOperationTable.end(), "Unknown predicate operation");
return op->second;
}
Node ShaderIR::GetConditionCode(Tegra::Shader::ConditionCode cc) {
switch (cc) {
case Tegra::Shader::ConditionCode::NEU:
return GetInternalFlag(InternalFlag::Zero, true);
default:
UNIMPLEMENTED_MSG("Unimplemented condition code: {}", static_cast<u32>(cc));
return GetPredicate(static_cast<u64>(Pred::NeverExecute));
}
}
void ShaderIR::SetRegister(BasicBlock& bb, Register dest, Node src) {
bb.push_back(Operation(OperationCode::Assign, GetRegister(dest), src));
}
void ShaderIR::SetPredicate(BasicBlock& bb, u64 dest, Node src) {
bb.push_back(Operation(OperationCode::LogicalAssign, GetPredicate(dest), src));
}
void ShaderIR::SetInternalFlag(BasicBlock& bb, InternalFlag flag, Node value) {
bb.push_back(Operation(OperationCode::LogicalAssign, GetInternalFlag(flag), value));
}
void ShaderIR::SetLocalMemory(BasicBlock& bb, Node address, Node value) {
bb.push_back(Operation(OperationCode::Assign, GetLocalMemory(address), value));
}
void ShaderIR::SetTemporal(BasicBlock& bb, u32 id, Node value) {
SetRegister(bb, Register::ZeroIndex + 1 + id, value);
}
void ShaderIR::SetInternalFlagsFromFloat(BasicBlock& bb, Node value, bool sets_cc) {
if (!sets_cc) {
return;
}
const Node zerop = Operation(OperationCode::LogicalFEqual, value, Immediate(0.0f));
SetInternalFlag(bb, InternalFlag::Zero, zerop);
LOG_WARNING(HW_GPU, "Condition codes implementation is incomplete");
}
void ShaderIR::SetInternalFlagsFromInteger(BasicBlock& bb, Node value, bool sets_cc) {
if (!sets_cc) {
return;
}
const Node zerop = Operation(OperationCode::LogicalIEqual, value, Immediate(0));
SetInternalFlag(bb, InternalFlag::Zero, zerop);
LOG_WARNING(HW_GPU, "Condition codes implementation is incomplete");
}
Node ShaderIR::BitfieldExtract(Node value, u32 offset, u32 bits) {
return Operation(OperationCode::UBitfieldExtract, NO_PRECISE, value, Immediate(offset),
Immediate(bits));
}
/*static*/ OperationCode ShaderIR::SignedToUnsignedCode(OperationCode operation_code,
bool is_signed) {
if (is_signed) {
return operation_code;
}
switch (operation_code) {
case OperationCode::FCastInteger:
return OperationCode::FCastUInteger;
case OperationCode::IAdd:
return OperationCode::UAdd;
case OperationCode::IMul:
return OperationCode::UMul;
case OperationCode::IDiv:
return OperationCode::UDiv;
case OperationCode::IMin:
return OperationCode::UMin;
case OperationCode::IMax:
return OperationCode::UMax;
case OperationCode::ICastFloat:
return OperationCode::UCastFloat;
case OperationCode::ICastUnsigned:
return OperationCode::UCastSigned;
case OperationCode::ILogicalShiftLeft:
return OperationCode::ULogicalShiftLeft;
case OperationCode::ILogicalShiftRight:
return OperationCode::ULogicalShiftRight;
case OperationCode::IArithmeticShiftRight:
return OperationCode::UArithmeticShiftRight;
case OperationCode::IBitwiseAnd:
return OperationCode::UBitwiseAnd;
case OperationCode::IBitwiseOr:
return OperationCode::UBitwiseOr;
case OperationCode::IBitwiseXor:
return OperationCode::UBitwiseXor;
case OperationCode::IBitwiseNot:
return OperationCode::UBitwiseNot;
case OperationCode::IBitfieldInsert:
return OperationCode::UBitfieldInsert;
case OperationCode::IBitCount:
return OperationCode::UBitCount;
case OperationCode::LogicalILessThan:
return OperationCode::LogicalULessThan;
case OperationCode::LogicalIEqual:
return OperationCode::LogicalUEqual;
case OperationCode::LogicalILessEqual:
return OperationCode::LogicalULessEqual;
case OperationCode::LogicalIGreaterThan:
return OperationCode::LogicalUGreaterThan;
case OperationCode::LogicalINotEqual:
return OperationCode::LogicalUNotEqual;
case OperationCode::LogicalIGreaterEqual:
return OperationCode::LogicalUGreaterEqual;
case OperationCode::INegate:
UNREACHABLE_MSG("Can't negate an unsigned integer");
case OperationCode::IAbsolute:
UNREACHABLE_MSG("Can't apply absolute to an unsigned integer");
}
UNREACHABLE_MSG("Unknown signed operation with code={}", static_cast<u32>(operation_code));
return {};
}
} // namespace VideoCommon::Shader