yuzu-mainline/src/core/core_timing.cpp
Lioncash a7af349dae core_timing: Make use of uintptr_t to represent user_data
Makes the interface future-proofed for supporting other platforms in the event we ever support platforms with differing pointer sizes. This way, we have a type in place that is always guaranteed to be able to represent a pointer exactly.
2020-07-27 21:21:01 -04:00

256 lines
7.2 KiB
C++

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>
#include "common/assert.h"
#include "common/microprofile.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
namespace Core::Timing {
constexpr u64 MAX_SLICE_LENGTH = 4000;
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
return std::make_shared<EventType>(std::move(callback), std::move(name));
}
struct CoreTiming::Event {
u64 time;
u64 fifo_order;
std::uintptr_t user_data;
std::weak_ptr<EventType> type;
// Sort by time, unless the times are the same, in which case sort by
// the order added to the queue
friend bool operator>(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
}
friend bool operator<(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
};
CoreTiming::CoreTiming() {
clock =
Common::CreateBestMatchingClock(Core::Hardware::BASE_CLOCK_RATE, Core::Hardware::CNTFREQ);
}
CoreTiming::~CoreTiming() = default;
void CoreTiming::ThreadEntry(CoreTiming& instance) {
constexpr char name[] = "yuzu:HostTiming";
MicroProfileOnThreadCreate(name);
Common::SetCurrentThreadName(name);
Common::SetCurrentThreadPriority(Common::ThreadPriority::VeryHigh);
instance.on_thread_init();
instance.ThreadLoop();
}
void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
on_thread_init = std::move(on_thread_init_);
event_fifo_id = 0;
shutting_down = false;
ticks = 0;
const auto empty_timed_callback = [](std::uintptr_t, std::chrono::nanoseconds) {};
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
if (is_multicore) {
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
}
}
void CoreTiming::Shutdown() {
paused = true;
shutting_down = true;
pause_event.Set();
event.Set();
if (timer_thread) {
timer_thread->join();
}
ClearPendingEvents();
timer_thread.reset();
has_started = false;
}
void CoreTiming::Pause(bool is_paused) {
paused = is_paused;
pause_event.Set();
}
void CoreTiming::SyncPause(bool is_paused) {
if (is_paused == paused && paused_set == paused) {
return;
}
Pause(is_paused);
if (timer_thread) {
if (!is_paused) {
pause_event.Set();
}
event.Set();
while (paused_set != is_paused)
;
}
}
bool CoreTiming::IsRunning() const {
return !paused_set;
}
bool CoreTiming::HasPendingEvents() const {
return !(wait_set && event_queue.empty());
}
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data) {
{
std::scoped_lock scope{basic_lock};
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
event.Set();
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data) {
std::scoped_lock scope{basic_lock};
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
void CoreTiming::AddTicks(u64 ticks) {
this->ticks += ticks;
downcount -= ticks;
}
void CoreTiming::Idle() {
if (!event_queue.empty()) {
const u64 next_event_time = event_queue.front().time;
const u64 next_ticks = nsToCycles(std::chrono::nanoseconds(next_event_time)) + 10U;
if (next_ticks > ticks) {
ticks = next_ticks;
}
return;
}
ticks += 1000U;
}
void CoreTiming::ResetTicks() {
downcount = MAX_SLICE_LENGTH;
}
u64 CoreTiming::GetCPUTicks() const {
if (is_multicore) {
return clock->GetCPUCycles();
}
return ticks;
}
u64 CoreTiming::GetClockTicks() const {
if (is_multicore) {
return clock->GetClockCycles();
}
return CpuCyclesToClockCycles(ticks);
}
void CoreTiming::ClearPendingEvents() {
event_queue.clear();
}
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
std::scoped_lock lock{basic_lock};
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get();
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
basic_lock.unlock();
if (const auto event_type{evt.type.lock()}) {
event_type->callback(
evt.user_data, std::chrono::nanoseconds{static_cast<s64>(global_timer - evt.time)});
}
basic_lock.lock();
global_timer = GetGlobalTimeNs().count();
}
if (!event_queue.empty()) {
const s64 next_time = event_queue.front().time - global_timer;
return next_time;
} else {
return std::nullopt;
}
}
void CoreTiming::ThreadLoop() {
has_started = true;
while (!shutting_down) {
while (!paused) {
paused_set = false;
const auto next_time = Advance();
if (next_time) {
if (*next_time > 0) {
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
event.WaitFor(next_time_ns);
}
} else {
wait_set = true;
event.Wait();
}
wait_set = false;
}
paused_set = true;
clock->Pause(true);
pause_event.Wait();
clock->Pause(false);
}
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
if (is_multicore) {
return clock->GetTimeNS();
}
return CyclesToNs(ticks);
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
if (is_multicore) {
return clock->GetTimeUS();
}
return CyclesToUs(ticks);
}
} // namespace Core::Timing