yuzu-mainline/src/video_core/engines/shader_bytecode.h
2018-11-21 16:12:30 -03:00

1670 lines
49 KiB
C++

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <bitset>
#include <optional>
#include <string>
#include <tuple>
#include <vector>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
namespace Tegra::Shader {
struct Register {
/// Number of registers
static constexpr std::size_t NumRegisters = 256;
/// Register 255 is special cased to always be 0
static constexpr std::size_t ZeroIndex = 255;
enum class Size : u64 {
Byte = 0,
Short = 1,
Word = 2,
Long = 3,
};
constexpr Register() = default;
constexpr Register(u64 value) : value(value) {}
constexpr operator u64() const {
return value;
}
template <typename T>
constexpr u64 operator-(const T& oth) const {
return value - oth;
}
template <typename T>
constexpr u64 operator&(const T& oth) const {
return value & oth;
}
constexpr u64 operator&(const Register& oth) const {
return value & oth.value;
}
constexpr u64 operator~() const {
return ~value;
}
u64 GetSwizzledIndex(u64 elem) const {
elem = (value + elem) & 3;
return (value & ~3) + elem;
}
private:
u64 value{};
};
enum class AttributeSize : u64 {
Word = 0,
DoubleWord = 1,
TripleWord = 2,
QuadWord = 3,
};
union Attribute {
Attribute() = default;
constexpr explicit Attribute(u64 value) : value(value) {}
enum class Index : u64 {
PointSize = 6,
Position = 7,
Attribute_0 = 8,
Attribute_31 = 39,
PointCoord = 46,
// This attribute contains a tuple of (~, ~, InstanceId, VertexId) when inside a vertex
// shader, and a tuple of (TessCoord.x, TessCoord.y, TessCoord.z, ~) when inside a Tess Eval
// shader.
TessCoordInstanceIDVertexID = 47,
// This attribute contains a tuple of (Unk, Unk, Unk, gl_FrontFacing) when inside a fragment
// shader. It is unknown what the other values contain.
FrontFacing = 63,
};
union {
BitField<20, 10, u64> immediate;
BitField<22, 2, u64> element;
BitField<24, 6, Index> index;
BitField<47, 3, AttributeSize> size;
} fmt20;
union {
BitField<30, 2, u64> element;
BitField<32, 6, Index> index;
} fmt28;
BitField<39, 8, u64> reg;
u64 value{};
};
union Sampler {
Sampler() = default;
constexpr explicit Sampler(u64 value) : value(value) {}
enum class Index : u64 {
Sampler_0 = 8,
};
BitField<36, 13, Index> index;
u64 value{};
};
} // namespace Tegra::Shader
namespace std {
// TODO(bunnei): The below is forbidden by the C++ standard, but works fine. See #330.
template <>
struct make_unsigned<Tegra::Shader::Attribute> {
using type = Tegra::Shader::Attribute;
};
template <>
struct make_unsigned<Tegra::Shader::Register> {
using type = Tegra::Shader::Register;
};
} // namespace std
namespace Tegra::Shader {
enum class Pred : u64 {
UnusedIndex = 0x7,
NeverExecute = 0xF,
};
enum class PredCondition : u64 {
LessThan = 1,
Equal = 2,
LessEqual = 3,
GreaterThan = 4,
NotEqual = 5,
GreaterEqual = 6,
LessThanWithNan = 9,
GreaterThanWithNan = 12,
NotEqualWithNan = 13,
GreaterEqualWithNan = 14,
// TODO(Subv): Other condition types
};
enum class PredOperation : u64 {
And = 0,
Or = 1,
Xor = 2,
};
enum class LogicOperation : u64 {
And = 0,
Or = 1,
Xor = 2,
PassB = 3,
};
enum class SubOp : u64 {
Cos = 0x0,
Sin = 0x1,
Ex2 = 0x2,
Lg2 = 0x3,
Rcp = 0x4,
Rsq = 0x5,
Sqrt = 0x8,
};
enum class F2iRoundingOp : u64 {
None = 0,
Floor = 1,
Ceil = 2,
Trunc = 3,
};
enum class F2fRoundingOp : u64 {
None = 0,
Pass = 3,
Round = 8,
Floor = 9,
Ceil = 10,
Trunc = 11,
};
enum class UniformType : u64 {
UnsignedByte = 0,
SignedByte = 1,
UnsignedShort = 2,
SignedShort = 3,
Single = 4,
Double = 5,
};
enum class StoreType : u64 {
Unsigned8 = 0,
Signed8 = 1,
Unsigned16 = 2,
Signed16 = 3,
Bytes32 = 4,
Bytes64 = 5,
Bytes128 = 6,
};
enum class IMinMaxExchange : u64 {
None = 0,
XLo = 1,
XMed = 2,
XHi = 3,
};
enum class VideoType : u64 {
Size16_Low = 0,
Size16_High = 1,
Size32 = 2,
Invalid = 3,
};
enum class VmadShr : u64 {
Shr7 = 1,
Shr15 = 2,
};
enum class XmadMode : u64 {
None = 0,
CLo = 1,
CHi = 2,
CSfu = 3,
CBcc = 4,
};
enum class IAdd3Mode : u64 {
None = 0,
RightShift = 1,
LeftShift = 2,
};
enum class IAdd3Height : u64 {
None = 0,
LowerHalfWord = 1,
UpperHalfWord = 2,
};
enum class FlowCondition : u64 {
Always = 0xF,
Fcsm_Tr = 0x1C, // TODO(bunnei): What is this used for?
};
enum class ControlCode : u64 {
F = 0,
LT = 1,
EQ = 2,
LE = 3,
GT = 4,
NE = 5,
GE = 6,
Num = 7,
Nan = 8,
LTU = 9,
EQU = 10,
LEU = 11,
GTU = 12,
NEU = 13,
GEU = 14,
T = 15,
OFF = 16,
LO = 17,
SFF = 18,
LS = 19,
HI = 20,
SFT = 21,
HS = 22,
OFT = 23,
CSM_TA = 24,
CSM_TR = 25,
CSM_MX = 26,
FCSM_TA = 27,
FCSM_TR = 28,
FCSM_MX = 29,
RLE = 30,
RGT = 31,
};
enum class PredicateResultMode : u64 {
None = 0x0,
NotZero = 0x3,
};
enum class TextureType : u64 {
Texture1D = 0,
Texture2D = 1,
Texture3D = 2,
TextureCube = 3,
};
enum class TextureQueryType : u64 {
Dimension = 1,
TextureType = 2,
SamplePosition = 5,
Filter = 16,
LevelOfDetail = 18,
Wrap = 20,
BorderColor = 22,
};
enum class TextureProcessMode : u64 {
None = 0,
LZ = 1, // Unknown, appears to be the same as none.
LB = 2, // Load Bias.
LL = 3, // Load LOD (LevelOfDetail)
LBA = 6, // Load Bias. The A is unknown, does not appear to differ with LB
LLA = 7 // Load LOD. The A is unknown, does not appear to differ with LL
};
enum class TextureMiscMode : u64 {
DC,
AOFFI, // Uses Offset
NDV,
NODEP,
MZ,
PTP,
};
enum class IsberdMode : u64 {
None = 0,
Patch = 1,
Prim = 2,
Attr = 3,
};
enum class IsberdShift : u64 { None = 0, U16 = 1, B32 = 2 };
enum class HalfType : u64 {
H0_H1 = 0,
F32 = 1,
H0_H0 = 2,
H1_H1 = 3,
};
enum class HalfMerge : u64 {
H0_H1 = 0,
F32 = 1,
Mrg_H0 = 2,
Mrg_H1 = 3,
};
enum class HalfPrecision : u64 {
None = 0,
FTZ = 1,
FMZ = 2,
};
enum class IpaInterpMode : u64 {
Linear = 0,
Perspective = 1,
Flat = 2,
Sc = 3,
};
enum class IpaSampleMode : u64 {
Default = 0,
Centroid = 1,
Offset = 2,
};
struct IpaMode {
IpaInterpMode interpolation_mode;
IpaSampleMode sampling_mode;
bool operator==(const IpaMode& a) const {
return std::tie(interpolation_mode, sampling_mode) ==
std::tie(a.interpolation_mode, a.sampling_mode);
}
bool operator!=(const IpaMode& a) const {
return !operator==(a);
}
};
enum class SystemVariable : u64 {
LaneId = 0x00,
VirtCfg = 0x02,
VirtId = 0x03,
Pm0 = 0x04,
Pm1 = 0x05,
Pm2 = 0x06,
Pm3 = 0x07,
Pm4 = 0x08,
Pm5 = 0x09,
Pm6 = 0x0a,
Pm7 = 0x0b,
OrderingTicket = 0x0f,
PrimType = 0x10,
InvocationId = 0x11,
Ydirection = 0x12,
ThreadKill = 0x13,
ShaderType = 0x14,
DirectBeWriteAddressLow = 0x15,
DirectBeWriteAddressHigh = 0x16,
DirectBeWriteEnabled = 0x17,
MachineId0 = 0x18,
MachineId1 = 0x19,
MachineId2 = 0x1a,
MachineId3 = 0x1b,
Affinity = 0x1c,
InvocationInfo = 0x1d,
WscaleFactorXY = 0x1e,
WscaleFactorZ = 0x1f,
Tid = 0x20,
TidX = 0x21,
TidY = 0x22,
TidZ = 0x23,
CtaParam = 0x24,
CtaIdX = 0x25,
CtaIdY = 0x26,
CtaIdZ = 0x27,
NtId = 0x28,
CirQueueIncrMinusOne = 0x29,
Nlatc = 0x2a,
SmSpaVersion = 0x2c,
MultiPassShaderInfo = 0x2d,
LwinHi = 0x2e,
SwinHi = 0x2f,
SwinLo = 0x30,
SwinSz = 0x31,
SmemSz = 0x32,
SmemBanks = 0x33,
LwinLo = 0x34,
LwinSz = 0x35,
LmemLosz = 0x36,
LmemHioff = 0x37,
EqMask = 0x38,
LtMask = 0x39,
LeMask = 0x3a,
GtMask = 0x3b,
GeMask = 0x3c,
RegAlloc = 0x3d,
CtxAddr = 0x3e, // .fmask = F_SM50
BarrierAlloc = 0x3e, // .fmask = F_SM60
GlobalErrorStatus = 0x40,
WarpErrorStatus = 0x42,
WarpErrorStatusClear = 0x43,
PmHi0 = 0x48,
PmHi1 = 0x49,
PmHi2 = 0x4a,
PmHi3 = 0x4b,
PmHi4 = 0x4c,
PmHi5 = 0x4d,
PmHi6 = 0x4e,
PmHi7 = 0x4f,
ClockLo = 0x50,
ClockHi = 0x51,
GlobalTimerLo = 0x52,
GlobalTimerHi = 0x53,
HwTaskId = 0x60,
CircularQueueEntryIndex = 0x61,
CircularQueueEntryAddressLow = 0x62,
CircularQueueEntryAddressHigh = 0x63,
};
union Instruction {
Instruction& operator=(const Instruction& instr) {
value = instr.value;
return *this;
}
constexpr Instruction(u64 value) : value{value} {}
BitField<0, 8, Register> gpr0;
BitField<8, 8, Register> gpr8;
union {
BitField<16, 4, Pred> full_pred;
BitField<16, 3, u64> pred_index;
} pred;
BitField<19, 1, u64> negate_pred;
BitField<20, 8, Register> gpr20;
BitField<20, 4, SubOp> sub_op;
BitField<28, 8, Register> gpr28;
BitField<39, 8, Register> gpr39;
BitField<48, 16, u64> opcode;
union {
BitField<20, 16, u64> imm20_16;
BitField<20, 19, u64> imm20_19;
BitField<20, 32, s64> imm20_32;
BitField<45, 1, u64> negate_b;
BitField<46, 1, u64> abs_a;
BitField<48, 1, u64> negate_a;
BitField<49, 1, u64> abs_b;
BitField<50, 1, u64> saturate_d;
BitField<56, 1, u64> negate_imm;
union {
BitField<39, 3, u64> pred;
BitField<42, 1, u64> negate_pred;
} fmnmx;
union {
BitField<39, 1, u64> invert_a;
BitField<40, 1, u64> invert_b;
BitField<41, 2, LogicOperation> operation;
BitField<44, 2, PredicateResultMode> pred_result_mode;
BitField<48, 3, Pred> pred48;
} lop;
union {
BitField<53, 2, LogicOperation> operation;
BitField<55, 1, u64> invert_a;
BitField<56, 1, u64> invert_b;
} lop32i;
union {
BitField<28, 8, u64> imm_lut28;
BitField<48, 8, u64> imm_lut48;
u32 GetImmLut28() const {
return static_cast<u32>(imm_lut28);
}
u32 GetImmLut48() const {
return static_cast<u32>(imm_lut48);
}
} lop3;
u16 GetImm20_16() const {
return static_cast<u16>(imm20_16);
}
u32 GetImm20_19() const {
u32 imm{static_cast<u32>(imm20_19)};
imm <<= 12;
imm |= negate_imm ? 0x80000000 : 0;
return imm;
}
u32 GetImm20_32() const {
return static_cast<u32>(imm20_32);
}
s32 GetSignedImm20_20() const {
u32 immediate = static_cast<u32>(imm20_19 | (negate_imm << 19));
// Sign extend the 20-bit value.
u32 mask = 1U << (20 - 1);
return static_cast<s32>((immediate ^ mask) - mask);
}
} alu;
union {
BitField<51, 1, u64> saturate;
BitField<52, 2, IpaSampleMode> sample_mode;
BitField<54, 2, IpaInterpMode> interp_mode;
} ipa;
union {
BitField<39, 2, u64> tab5cb8_2;
BitField<41, 3, u64> tab5c68_1;
BitField<44, 2, u64> tab5c68_0;
BitField<47, 1, u64> cc;
BitField<48, 1, u64> negate_b;
} fmul;
union {
BitField<55, 1, u64> saturate;
} fmul32;
union {
BitField<52, 1, u64> generates_cc;
} op_32;
union {
BitField<48, 1, u64> is_signed;
} shift;
union {
BitField<39, 5, u64> shift_amount;
BitField<48, 1, u64> negate_b;
BitField<49, 1, u64> negate_a;
} alu_integer;
union {
BitField<39, 1, u64> ftz;
BitField<32, 1, u64> saturate;
BitField<49, 2, HalfMerge> merge;
BitField<43, 1, u64> negate_a;
BitField<44, 1, u64> abs_a;
BitField<47, 2, HalfType> type_a;
BitField<31, 1, u64> negate_b;
BitField<30, 1, u64> abs_b;
BitField<47, 2, HalfType> type_b;
BitField<35, 2, HalfType> type_c;
} alu_half;
union {
BitField<39, 2, HalfPrecision> precision;
BitField<39, 1, u64> ftz;
BitField<52, 1, u64> saturate;
BitField<49, 2, HalfMerge> merge;
BitField<43, 1, u64> negate_a;
BitField<44, 1, u64> abs_a;
BitField<47, 2, HalfType> type_a;
} alu_half_imm;
union {
BitField<29, 1, u64> first_negate;
BitField<20, 9, u64> first;
BitField<56, 1, u64> second_negate;
BitField<30, 9, u64> second;
u32 PackImmediates() const {
// Immediates are half floats shifted.
constexpr u32 imm_shift = 6;
return static_cast<u32>((first << imm_shift) | (second << (16 + imm_shift)));
}
} half_imm;
union {
union {
BitField<37, 2, HalfPrecision> precision;
BitField<32, 1, u64> saturate;
BitField<30, 1, u64> negate_c;
BitField<35, 2, HalfType> type_c;
} rr;
BitField<57, 2, HalfPrecision> precision;
BitField<52, 1, u64> saturate;
BitField<49, 2, HalfMerge> merge;
BitField<47, 2, HalfType> type_a;
BitField<56, 1, u64> negate_b;
BitField<28, 2, HalfType> type_b;
BitField<51, 1, u64> negate_c;
BitField<53, 2, HalfType> type_reg39;
} hfma2;
union {
BitField<40, 1, u64> invert;
} popc;
union {
BitField<39, 3, u64> pred;
BitField<42, 1, u64> neg_pred;
} sel;
union {
BitField<39, 3, u64> pred;
BitField<42, 1, u64> negate_pred;
BitField<43, 2, IMinMaxExchange> exchange;
BitField<48, 1, u64> is_signed;
} imnmx;
union {
BitField<31, 2, IAdd3Height> height_c;
BitField<33, 2, IAdd3Height> height_b;
BitField<35, 2, IAdd3Height> height_a;
BitField<37, 2, IAdd3Mode> mode;
BitField<49, 1, u64> neg_c;
BitField<50, 1, u64> neg_b;
BitField<51, 1, u64> neg_a;
} iadd3;
union {
BitField<54, 1, u64> saturate;
BitField<56, 1, u64> negate_a;
} iadd32i;
union {
BitField<53, 1, u64> negate_b;
BitField<54, 1, u64> abs_a;
BitField<56, 1, u64> negate_a;
BitField<57, 1, u64> abs_b;
} fadd32i;
union {
BitField<20, 8, u64> shift_position;
BitField<28, 8, u64> shift_length;
BitField<48, 1, u64> negate_b;
BitField<49, 1, u64> negate_a;
u64 GetLeftShiftValue() const {
return 32 - (shift_position + shift_length);
}
} bfe;
union {
BitField<48, 3, u64> pred48;
union {
BitField<20, 20, u64> entry_a;
BitField<39, 5, u64> entry_b;
BitField<45, 1, u64> neg;
BitField<46, 1, u64> uses_cc;
} imm;
union {
BitField<20, 14, u64> cb_index;
BitField<34, 5, u64> cb_offset;
BitField<56, 1, u64> neg;
BitField<57, 1, u64> uses_cc;
} hi;
union {
BitField<20, 14, u64> cb_index;
BitField<34, 5, u64> cb_offset;
BitField<39, 5, u64> entry_a;
BitField<45, 1, u64> neg;
BitField<46, 1, u64> uses_cc;
} rz;
union {
BitField<39, 5, u64> entry_a;
BitField<45, 1, u64> neg;
BitField<46, 1, u64> uses_cc;
} r1;
union {
BitField<28, 8, u64> entry_a;
BitField<37, 1, u64> neg;
BitField<38, 1, u64> uses_cc;
} r2;
} lea;
union {
BitField<0, 5, FlowCondition> cond;
} flow;
union {
BitField<47, 1, u64> cc;
BitField<48, 1, u64> negate_b;
BitField<49, 1, u64> negate_c;
BitField<51, 2, u64> tab5980_1;
BitField<53, 2, u64> tab5980_0;
} ffma;
union {
BitField<48, 3, UniformType> type;
BitField<44, 2, u64> unknown;
} ld_c;
union {
BitField<48, 3, StoreType> type;
} ldst_sl;
union {
BitField<44, 2, u64> unknown;
} ld_l;
union {
BitField<44, 2, u64> unknown;
} st_l;
union {
BitField<0, 3, u64> pred0;
BitField<3, 3, u64> pred3;
BitField<7, 1, u64> abs_a;
BitField<39, 3, u64> pred39;
BitField<42, 1, u64> neg_pred;
BitField<43, 1, u64> neg_a;
BitField<44, 1, u64> abs_b;
BitField<45, 2, PredOperation> op;
BitField<47, 1, u64> ftz;
BitField<48, 4, PredCondition> cond;
} fsetp;
union {
BitField<0, 3, u64> pred0;
BitField<3, 3, u64> pred3;
BitField<39, 3, u64> pred39;
BitField<42, 1, u64> neg_pred;
BitField<45, 2, PredOperation> op;
BitField<48, 1, u64> is_signed;
BitField<49, 3, PredCondition> cond;
} isetp;
union {
BitField<0, 3, u64> pred0;
BitField<3, 3, u64> pred3;
BitField<12, 3, u64> pred12;
BitField<15, 1, u64> neg_pred12;
BitField<24, 2, PredOperation> cond;
BitField<29, 3, u64> pred29;
BitField<32, 1, u64> neg_pred29;
BitField<39, 3, u64> pred39;
BitField<42, 1, u64> neg_pred39;
BitField<45, 2, PredOperation> op;
} psetp;
union {
BitField<43, 4, PredCondition> cond;
BitField<45, 2, PredOperation> op;
BitField<3, 3, u64> pred3;
BitField<0, 3, u64> pred0;
BitField<39, 3, u64> pred39;
} vsetp;
union {
BitField<12, 3, u64> pred12;
BitField<15, 1, u64> neg_pred12;
BitField<24, 2, PredOperation> cond;
BitField<29, 3, u64> pred29;
BitField<32, 1, u64> neg_pred29;
BitField<39, 3, u64> pred39;
BitField<42, 1, u64> neg_pred39;
BitField<44, 1, u64> bf;
BitField<45, 2, PredOperation> op;
} pset;
union {
BitField<0, 3, u64> pred0;
BitField<3, 3, u64> pred3;
BitField<8, 5, ControlCode> cc; // flag in cc
BitField<39, 3, u64> pred39;
BitField<42, 1, u64> neg_pred39;
BitField<45, 4, PredOperation> op; // op with pred39
} csetp;
union {
BitField<35, 4, PredCondition> cond;
BitField<49, 1, u64> h_and;
BitField<6, 1, u64> ftz;
BitField<45, 2, PredOperation> op;
BitField<3, 3, u64> pred3;
BitField<0, 3, u64> pred0;
BitField<43, 1, u64> negate_a;
BitField<44, 1, u64> abs_a;
BitField<47, 2, HalfType> type_a;
BitField<31, 1, u64> negate_b;
BitField<30, 1, u64> abs_b;
BitField<28, 2, HalfType> type_b;
BitField<42, 1, u64> neg_pred;
BitField<39, 3, u64> pred39;
} hsetp2;
union {
BitField<39, 3, u64> pred39;
BitField<42, 1, u64> neg_pred;
BitField<43, 1, u64> neg_a;
BitField<44, 1, u64> abs_b;
BitField<45, 2, PredOperation> op;
BitField<48, 4, PredCondition> cond;
BitField<52, 1, u64> bf;
BitField<53, 1, u64> neg_b;
BitField<54, 1, u64> abs_a;
BitField<55, 1, u64> ftz;
} fset;
union {
BitField<49, 1, u64> bf;
BitField<35, 3, PredCondition> cond;
BitField<50, 1, u64> ftz;
BitField<45, 2, PredOperation> op;
BitField<43, 1, u64> negate_a;
BitField<44, 1, u64> abs_a;
BitField<47, 2, HalfType> type_a;
BitField<31, 1, u64> negate_b;
BitField<30, 1, u64> abs_b;
BitField<28, 2, HalfType> type_b;
BitField<42, 1, u64> neg_pred;
BitField<39, 3, u64> pred39;
} hset2;
union {
BitField<39, 3, u64> pred39;
BitField<42, 1, u64> neg_pred;
BitField<44, 1, u64> bf;
BitField<45, 2, PredOperation> op;
BitField<48, 1, u64> is_signed;
BitField<49, 3, PredCondition> cond;
} iset;
union {
BitField<8, 2, Register::Size> dest_size;
BitField<10, 2, Register::Size> src_size;
BitField<12, 1, u64> is_output_signed;
BitField<13, 1, u64> is_input_signed;
BitField<41, 2, u64> selector;
BitField<45, 1, u64> negate_a;
BitField<49, 1, u64> abs_a;
union {
BitField<39, 2, F2iRoundingOp> rounding;
} f2i;
union {
BitField<39, 4, F2fRoundingOp> rounding;
} f2f;
} conversion;
union {
BitField<28, 1, u64> array;
BitField<29, 2, TextureType> texture_type;
BitField<31, 4, u64> component_mask;
BitField<49, 1, u64> nodep_flag;
BitField<50, 1, u64> dc_flag;
BitField<54, 1, u64> aoffi_flag;
BitField<55, 3, TextureProcessMode> process_mode;
bool IsComponentEnabled(std::size_t component) const {
return ((1ull << component) & component_mask) != 0;
}
TextureProcessMode GetTextureProcessMode() const {
return process_mode;
}
bool UsesMiscMode(TextureMiscMode mode) const {
switch (mode) {
case TextureMiscMode::DC:
return dc_flag != 0;
case TextureMiscMode::NODEP:
return nodep_flag != 0;
case TextureMiscMode::AOFFI:
return aoffi_flag != 0;
default:
break;
}
return false;
}
} tex;
union {
BitField<22, 6, TextureQueryType> query_type;
BitField<31, 4, u64> component_mask;
BitField<49, 1, u64> nodep_flag;
bool UsesMiscMode(TextureMiscMode mode) const {
switch (mode) {
case TextureMiscMode::NODEP:
return nodep_flag != 0;
default:
break;
}
return false;
}
} txq;
union {
BitField<28, 1, u64> array;
BitField<29, 2, TextureType> texture_type;
BitField<31, 4, u64> component_mask;
BitField<35, 1, u64> ndv_flag;
BitField<49, 1, u64> nodep_flag;
bool IsComponentEnabled(std::size_t component) const {
return ((1ull << component) & component_mask) != 0;
}
bool UsesMiscMode(TextureMiscMode mode) const {
switch (mode) {
case TextureMiscMode::NDV:
return (ndv_flag != 0);
case TextureMiscMode::NODEP:
return (nodep_flag != 0);
default:
break;
}
return false;
}
} tmml;
union {
BitField<28, 1, u64> array;
BitField<29, 2, TextureType> texture_type;
BitField<35, 1, u64> ndv_flag;
BitField<49, 1, u64> nodep_flag;
BitField<50, 1, u64> dc_flag;
BitField<54, 2, u64> info;
BitField<56, 2, u64> component;
bool UsesMiscMode(TextureMiscMode mode) const {
switch (mode) {
case TextureMiscMode::NDV:
return ndv_flag != 0;
case TextureMiscMode::NODEP:
return nodep_flag != 0;
case TextureMiscMode::DC:
return dc_flag != 0;
case TextureMiscMode::AOFFI:
return info == 1;
case TextureMiscMode::PTP:
return info == 2;
default:
break;
}
return false;
}
} tld4;
union {
BitField<49, 1, u64> nodep_flag;
BitField<50, 1, u64> dc_flag;
BitField<51, 1, u64> aoffi_flag;
BitField<52, 2, u64> component;
bool UsesMiscMode(TextureMiscMode mode) const {
switch (mode) {
case TextureMiscMode::DC:
return dc_flag != 0;
case TextureMiscMode::NODEP:
return nodep_flag != 0;
case TextureMiscMode::AOFFI:
return aoffi_flag != 0;
default:
break;
}
return false;
}
} tld4s;
union {
BitField<0, 8, Register> gpr0;
BitField<28, 8, Register> gpr28;
BitField<49, 1, u64> nodep_flag;
BitField<50, 3, u64> component_mask_selector;
BitField<53, 4, u64> texture_info;
TextureType GetTextureType() const {
// The TEXS instruction has a weird encoding for the texture type.
if (texture_info == 0)
return TextureType::Texture1D;
if (texture_info >= 1 && texture_info <= 9)
return TextureType::Texture2D;
if (texture_info >= 10 && texture_info <= 11)
return TextureType::Texture3D;
if (texture_info >= 12 && texture_info <= 13)
return TextureType::TextureCube;
LOG_CRITICAL(HW_GPU, "Unhandled texture_info: {}",
static_cast<u32>(texture_info.Value()));
UNREACHABLE();
}
TextureProcessMode GetTextureProcessMode() const {
switch (texture_info) {
case 0:
case 2:
case 6:
case 8:
case 9:
case 11:
return TextureProcessMode::LZ;
case 3:
case 5:
case 13:
return TextureProcessMode::LL;
default:
break;
}
return TextureProcessMode::None;
}
bool UsesMiscMode(TextureMiscMode mode) const {
switch (mode) {
case TextureMiscMode::DC:
return (texture_info >= 4 && texture_info <= 6) || texture_info == 9;
case TextureMiscMode::NODEP:
return nodep_flag != 0;
default:
break;
}
return false;
}
bool IsArrayTexture() const {
// TEXS only supports Texture2D arrays.
return texture_info >= 7 && texture_info <= 9;
}
bool HasTwoDestinations() const {
return gpr28.Value() != Register::ZeroIndex;
}
bool IsComponentEnabled(std::size_t component) const {
static constexpr std::array<std::array<u32, 8>, 4> mask_lut{{
{},
{0x1, 0x2, 0x4, 0x8, 0x3, 0x9, 0xa, 0xc},
{0x1, 0x2, 0x4, 0x8, 0x3, 0x9, 0xa, 0xc},
{0x7, 0xb, 0xd, 0xe, 0xf},
}};
std::size_t index{gpr0.Value() != Register::ZeroIndex ? 1U : 0U};
index |= gpr28.Value() != Register::ZeroIndex ? 2 : 0;
u32 mask = mask_lut[index][component_mask_selector];
// A mask of 0 means this instruction uses an unimplemented mask.
ASSERT(mask != 0);
return ((1ull << component) & mask) != 0;
}
} texs;
union {
BitField<49, 1, u64> nodep_flag;
BitField<53, 4, u64> texture_info;
TextureType GetTextureType() const {
// The TLDS instruction has a weird encoding for the texture type.
if (texture_info >= 0 && texture_info <= 1) {
return TextureType::Texture1D;
}
if (texture_info == 2 || texture_info == 8 || texture_info == 12 ||
(texture_info >= 4 && texture_info <= 6)) {
return TextureType::Texture2D;
}
if (texture_info == 7) {
return TextureType::Texture3D;
}
LOG_CRITICAL(HW_GPU, "Unhandled texture_info: {}",
static_cast<u32>(texture_info.Value()));
UNREACHABLE();
}
TextureProcessMode GetTextureProcessMode() const {
if (texture_info == 1 || texture_info == 5 || texture_info == 12)
return TextureProcessMode::LL;
return TextureProcessMode::LZ;
}
bool UsesMiscMode(TextureMiscMode mode) const {
switch (mode) {
case TextureMiscMode::AOFFI:
return texture_info == 12 || texture_info == 4;
case TextureMiscMode::MZ:
return texture_info == 5;
case TextureMiscMode::NODEP:
return nodep_flag != 0;
default:
break;
}
return false;
}
bool IsArrayTexture() const {
// TEXS only supports Texture2D arrays.
return texture_info == 8;
}
} tlds;
union {
BitField<20, 24, u64> target;
BitField<5, 1, u64> constant_buffer;
s32 GetBranchTarget() const {
// Sign extend the branch target offset
u32 mask = 1U << (24 - 1);
u32 value = static_cast<u32>(target);
// The branch offset is relative to the next instruction and is stored in bytes, so
// divide it by the size of an instruction and add 1 to it.
return static_cast<s32>((value ^ mask) - mask) / sizeof(Instruction) + 1;
}
} bra;
union {
BitField<39, 1, u64> emit; // EmitVertex
BitField<40, 1, u64> cut; // EndPrimitive
} out;
union {
BitField<31, 1, u64> skew;
BitField<32, 1, u64> o;
BitField<33, 2, IsberdMode> mode;
BitField<47, 2, IsberdShift> shift;
} isberd;
union {
BitField<48, 1, u64> signed_a;
BitField<38, 1, u64> is_byte_chunk_a;
BitField<36, 2, VideoType> type_a;
BitField<36, 2, u64> byte_height_a;
BitField<49, 1, u64> signed_b;
BitField<50, 1, u64> use_register_b;
BitField<30, 1, u64> is_byte_chunk_b;
BitField<28, 2, VideoType> type_b;
BitField<28, 2, u64> byte_height_b;
} video;
union {
BitField<51, 2, VmadShr> shr;
BitField<55, 1, u64> saturate; // Saturates the result (a * b + c)
BitField<47, 1, u64> cc;
} vmad;
union {
BitField<20, 16, u64> imm20_16;
BitField<36, 1, u64> product_shift_left;
BitField<37, 1, u64> merge_37;
BitField<48, 1, u64> sign_a;
BitField<49, 1, u64> sign_b;
BitField<50, 3, XmadMode> mode;
BitField<52, 1, u64> high_b;
BitField<53, 1, u64> high_a;
BitField<56, 1, u64> merge_56;
} xmad;
union {
BitField<20, 14, u64> offset;
BitField<34, 5, u64> index;
} cbuf34;
union {
BitField<20, 16, s64> offset;
BitField<36, 5, u64> index;
} cbuf36;
// Unsure about the size of this one.
// It's always used with a gpr0, so any size should be fine.
BitField<20, 8, SystemVariable> sys20;
BitField<47, 1, u64> generates_cc;
BitField<61, 1, u64> is_b_imm;
BitField<60, 1, u64> is_b_gpr;
BitField<59, 1, u64> is_c_gpr;
BitField<20, 24, s64> smem_imm;
BitField<0, 5, ControlCode> flow_control_code;
Attribute attribute;
Sampler sampler;
u64 value;
};
static_assert(sizeof(Instruction) == 0x8, "Incorrect structure size");
static_assert(std::is_standard_layout_v<Instruction>, "Instruction is not standard layout");
class OpCode {
public:
enum class Id {
KIL,
SSY,
SYNC,
BRK,
DEPBAR,
BFE_C,
BFE_R,
BFE_IMM,
BFI_IMM_R,
BRA,
PBK,
LD_A,
LD_L,
LD_S,
LD_C,
ST_A,
ST_L,
ST_S,
LDG, // Load from global memory
STG, // Store in global memory
TEX,
TXQ, // Texture Query
TEXS, // Texture Fetch with scalar/non-vec4 source/destinations
TLDS, // Texture Load with scalar/non-vec4 source/destinations
TLD4, // Texture Load 4
TLD4S, // Texture Load 4 with scalar / non - vec4 source / destinations
TMML_B, // Texture Mip Map Level
TMML, // Texture Mip Map Level
EXIT,
IPA,
OUT_R, // Emit vertex/primitive
ISBERD,
VMAD,
VSETP,
FFMA_IMM, // Fused Multiply and Add
FFMA_CR,
FFMA_RC,
FFMA_RR,
FADD_C,
FADD_R,
FADD_IMM,
FADD32I,
FMUL_C,
FMUL_R,
FMUL_IMM,
FMUL32_IMM,
IADD_C,
IADD_R,
IADD_IMM,
IADD3_C, // Add 3 Integers
IADD3_R,
IADD3_IMM,
IADD32I,
ISCADD_C, // Scale and Add
ISCADD_R,
ISCADD_IMM,
LEA_R1,
LEA_R2,
LEA_RZ,
LEA_IMM,
LEA_HI,
HADD2_C,
HADD2_R,
HADD2_IMM,
HMUL2_C,
HMUL2_R,
HMUL2_IMM,
HFMA2_CR,
HFMA2_RC,
HFMA2_RR,
HFMA2_IMM_R,
HSETP2_R,
HSET2_R,
POPC_C,
POPC_R,
POPC_IMM,
SEL_C,
SEL_R,
SEL_IMM,
MUFU, // Multi-Function Operator
RRO_C, // Range Reduction Operator
RRO_R,
RRO_IMM,
F2F_C,
F2F_R,
F2F_IMM,
F2I_C,
F2I_R,
F2I_IMM,
I2F_C,
I2F_R,
I2F_IMM,
I2I_C,
I2I_R,
I2I_IMM,
LOP_C,
LOP_R,
LOP_IMM,
LOP32I,
LOP3_C,
LOP3_R,
LOP3_IMM,
MOV_C,
MOV_R,
MOV_IMM,
MOV_SYS,
MOV32_IMM,
SHL_C,
SHL_R,
SHL_IMM,
SHR_C,
SHR_R,
SHR_IMM,
FMNMX_C,
FMNMX_R,
FMNMX_IMM,
IMNMX_C,
IMNMX_R,
IMNMX_IMM,
FSETP_C, // Set Predicate
FSETP_R,
FSETP_IMM,
FSET_C,
FSET_R,
FSET_IMM,
ISETP_C,
ISETP_IMM,
ISETP_R,
ISET_R,
ISET_C,
ISET_IMM,
PSETP,
PSET,
CSETP,
XMAD_IMM,
XMAD_CR,
XMAD_RC,
XMAD_RR,
};
enum class Type {
Trivial,
Arithmetic,
ArithmeticImmediate,
ArithmeticInteger,
ArithmeticIntegerImmediate,
ArithmeticHalf,
ArithmeticHalfImmediate,
Bfe,
Bfi,
Shift,
Ffma,
Hfma2,
Flow,
Synch,
Memory,
FloatSet,
FloatSetPredicate,
IntegerSet,
IntegerSetPredicate,
HalfSet,
HalfSetPredicate,
PredicateSetPredicate,
PredicateSetRegister,
Conversion,
Xmad,
Unknown,
};
/// Returns whether an opcode has an execution predicate field or not (ie, whether it can be
/// conditionally executed).
static bool IsPredicatedInstruction(Id opcode) {
// TODO(Subv): Add the rest of unpredicated instructions.
return opcode != Id::SSY && opcode != Id::PBK;
}
class Matcher {
public:
Matcher(const char* const name, u16 mask, u16 expected, OpCode::Id id, OpCode::Type type)
: name{name}, mask{mask}, expected{expected}, id{id}, type{type} {}
const char* GetName() const {
return name;
}
u16 GetMask() const {
return mask;
}
Id GetId() const {
return id;
}
Type GetType() const {
return type;
}
/**
* Tests to see if the given instruction is the instruction this matcher represents.
* @param instruction The instruction to test
* @returns true if the given instruction matches.
*/
bool Matches(u16 instruction) const {
return (instruction & mask) == expected;
}
private:
const char* name;
u16 mask;
u16 expected;
Id id;
Type type;
};
static std::optional<std::reference_wrapper<const Matcher>> Decode(Instruction instr) {
static const auto table{GetDecodeTable()};
const auto matches_instruction = [instr](const auto& matcher) {
return matcher.Matches(static_cast<u16>(instr.opcode));
};
auto iter = std::find_if(table.begin(), table.end(), matches_instruction);
return iter != table.end() ? std::optional<std::reference_wrapper<const Matcher>>(*iter)
: std::nullopt;
}
private:
struct Detail {
private:
static constexpr std::size_t opcode_bitsize = 16;
/**
* Generates the mask and the expected value after masking from a given bitstring.
* A '0' in a bitstring indicates that a zero must be present at that bit position.
* A '1' in a bitstring indicates that a one must be present at that bit position.
*/
static auto GetMaskAndExpect(const char* const bitstring) {
u16 mask = 0, expect = 0;
for (std::size_t i = 0; i < opcode_bitsize; i++) {
const std::size_t bit_position = opcode_bitsize - i - 1;
switch (bitstring[i]) {
case '0':
mask |= 1 << bit_position;
break;
case '1':
expect |= 1 << bit_position;
mask |= 1 << bit_position;
break;
default:
// Ignore
break;
}
}
return std::make_tuple(mask, expect);
}
public:
/// Creates a matcher that can match and parse instructions based on bitstring.
static auto GetMatcher(const char* const bitstring, OpCode::Id op, OpCode::Type type,
const char* const name) {
const auto mask_expect = GetMaskAndExpect(bitstring);
return Matcher(name, std::get<0>(mask_expect), std::get<1>(mask_expect), op, type);
}
};
static std::vector<Matcher> GetDecodeTable() {
std::vector<Matcher> table = {
#define INST(bitstring, op, type, name) Detail::GetMatcher(bitstring, op, type, name)
INST("111000110011----", Id::KIL, Type::Flow, "KIL"),
INST("111000101001----", Id::SSY, Type::Flow, "SSY"),
INST("111000101010----", Id::PBK, Type::Flow, "PBK"),
INST("111000100100----", Id::BRA, Type::Flow, "BRA"),
INST("1111000011111---", Id::SYNC, Type::Flow, "SYNC"),
INST("111000110100---", Id::BRK, Type::Flow, "BRK"),
INST("1111000011110---", Id::DEPBAR, Type::Synch, "DEPBAR"),
INST("1110111111011---", Id::LD_A, Type::Memory, "LD_A"),
INST("1110111101001---", Id::LD_S, Type::Memory, "LD_S"),
INST("1110111101000---", Id::LD_L, Type::Memory, "LD_L"),
INST("1110111110010---", Id::LD_C, Type::Memory, "LD_C"),
INST("1110111111110---", Id::ST_A, Type::Memory, "ST_A"),
INST("1110111101011---", Id::ST_S, Type::Memory, "ST_S"),
INST("1110111101010---", Id::ST_L, Type::Memory, "ST_L"),
INST("1110111011010---", Id::LDG, Type::Memory, "LDG"),
INST("1110111011011---", Id::STG, Type::Memory, "STG"),
INST("110000----111---", Id::TEX, Type::Memory, "TEX"),
INST("1101111101001---", Id::TXQ, Type::Memory, "TXQ"),
INST("1101100---------", Id::TEXS, Type::Memory, "TEXS"),
INST("1101101---------", Id::TLDS, Type::Memory, "TLDS"),
INST("110010----111---", Id::TLD4, Type::Memory, "TLD4"),
INST("1101111100------", Id::TLD4S, Type::Memory, "TLD4S"),
INST("110111110110----", Id::TMML_B, Type::Memory, "TMML_B"),
INST("1101111101011---", Id::TMML, Type::Memory, "TMML"),
INST("111000110000----", Id::EXIT, Type::Trivial, "EXIT"),
INST("11100000--------", Id::IPA, Type::Trivial, "IPA"),
INST("1111101111100---", Id::OUT_R, Type::Trivial, "OUT_R"),
INST("1110111111010---", Id::ISBERD, Type::Trivial, "ISBERD"),
INST("01011111--------", Id::VMAD, Type::Trivial, "VMAD"),
INST("0101000011110---", Id::VSETP, Type::Trivial, "VSETP"),
INST("0011001-1-------", Id::FFMA_IMM, Type::Ffma, "FFMA_IMM"),
INST("010010011-------", Id::FFMA_CR, Type::Ffma, "FFMA_CR"),
INST("010100011-------", Id::FFMA_RC, Type::Ffma, "FFMA_RC"),
INST("010110011-------", Id::FFMA_RR, Type::Ffma, "FFMA_RR"),
INST("0100110001011---", Id::FADD_C, Type::Arithmetic, "FADD_C"),
INST("0101110001011---", Id::FADD_R, Type::Arithmetic, "FADD_R"),
INST("0011100-01011---", Id::FADD_IMM, Type::Arithmetic, "FADD_IMM"),
INST("000010----------", Id::FADD32I, Type::ArithmeticImmediate, "FADD32I"),
INST("0100110001101---", Id::FMUL_C, Type::Arithmetic, "FMUL_C"),
INST("0101110001101---", Id::FMUL_R, Type::Arithmetic, "FMUL_R"),
INST("0011100-01101---", Id::FMUL_IMM, Type::Arithmetic, "FMUL_IMM"),
INST("00011110--------", Id::FMUL32_IMM, Type::ArithmeticImmediate, "FMUL32_IMM"),
INST("0100110000010---", Id::IADD_C, Type::ArithmeticInteger, "IADD_C"),
INST("0101110000010---", Id::IADD_R, Type::ArithmeticInteger, "IADD_R"),
INST("0011100-00010---", Id::IADD_IMM, Type::ArithmeticInteger, "IADD_IMM"),
INST("010011001100----", Id::IADD3_C, Type::ArithmeticInteger, "IADD3_C"),
INST("010111001100----", Id::IADD3_R, Type::ArithmeticInteger, "IADD3_R"),
INST("0011100-1100----", Id::IADD3_IMM, Type::ArithmeticInteger, "IADD3_IMM"),
INST("0001110---------", Id::IADD32I, Type::ArithmeticIntegerImmediate, "IADD32I"),
INST("0100110000011---", Id::ISCADD_C, Type::ArithmeticInteger, "ISCADD_C"),
INST("0101110000011---", Id::ISCADD_R, Type::ArithmeticInteger, "ISCADD_R"),
INST("0011100-00011---", Id::ISCADD_IMM, Type::ArithmeticInteger, "ISCADD_IMM"),
INST("0100110000001---", Id::POPC_C, Type::ArithmeticInteger, "POPC_C"),
INST("0101110000001---", Id::POPC_R, Type::ArithmeticInteger, "POPC_R"),
INST("0011100-00001---", Id::POPC_IMM, Type::ArithmeticInteger, "POPC_IMM"),
INST("0100110010100---", Id::SEL_C, Type::ArithmeticInteger, "SEL_C"),
INST("0101110010100---", Id::SEL_R, Type::ArithmeticInteger, "SEL_R"),
INST("0011100-10100---", Id::SEL_IMM, Type::ArithmeticInteger, "SEL_IMM"),
INST("0101101111011---", Id::LEA_R2, Type::ArithmeticInteger, "LEA_R2"),
INST("0101101111010---", Id::LEA_R1, Type::ArithmeticInteger, "LEA_R1"),
INST("001101101101----", Id::LEA_IMM, Type::ArithmeticInteger, "LEA_IMM"),
INST("010010111101----", Id::LEA_RZ, Type::ArithmeticInteger, "LEA_RZ"),
INST("00011000--------", Id::LEA_HI, Type::ArithmeticInteger, "LEA_HI"),
INST("0111101-1-------", Id::HADD2_C, Type::ArithmeticHalf, "HADD2_C"),
INST("0101110100010---", Id::HADD2_R, Type::ArithmeticHalf, "HADD2_R"),
INST("0111101-0-------", Id::HADD2_IMM, Type::ArithmeticHalfImmediate, "HADD2_IMM"),
INST("0111100-1-------", Id::HMUL2_C, Type::ArithmeticHalf, "HMUL2_C"),
INST("0101110100001---", Id::HMUL2_R, Type::ArithmeticHalf, "HMUL2_R"),
INST("0111100-0-------", Id::HMUL2_IMM, Type::ArithmeticHalfImmediate, "HMUL2_IMM"),
INST("01110---1-------", Id::HFMA2_CR, Type::Hfma2, "HFMA2_CR"),
INST("01100---1-------", Id::HFMA2_RC, Type::Hfma2, "HFMA2_RC"),
INST("0101110100000---", Id::HFMA2_RR, Type::Hfma2, "HFMA2_RR"),
INST("01110---0-------", Id::HFMA2_IMM_R, Type::Hfma2, "HFMA2_R_IMM"),
INST("0101110100100---", Id::HSETP2_R, Type::HalfSetPredicate, "HSETP_R"),
INST("0101110100011---", Id::HSET2_R, Type::HalfSet, "HSET2_R"),
INST("0101000010000---", Id::MUFU, Type::Arithmetic, "MUFU"),
INST("0100110010010---", Id::RRO_C, Type::Arithmetic, "RRO_C"),
INST("0101110010010---", Id::RRO_R, Type::Arithmetic, "RRO_R"),
INST("0011100-10010---", Id::RRO_IMM, Type::Arithmetic, "RRO_IMM"),
INST("0100110010101---", Id::F2F_C, Type::Conversion, "F2F_C"),
INST("0101110010101---", Id::F2F_R, Type::Conversion, "F2F_R"),
INST("0011100-10101---", Id::F2F_IMM, Type::Conversion, "F2F_IMM"),
INST("0100110010110---", Id::F2I_C, Type::Conversion, "F2I_C"),
INST("0101110010110---", Id::F2I_R, Type::Conversion, "F2I_R"),
INST("0011100-10110---", Id::F2I_IMM, Type::Conversion, "F2I_IMM"),
INST("0100110010011---", Id::MOV_C, Type::Arithmetic, "MOV_C"),
INST("0101110010011---", Id::MOV_R, Type::Arithmetic, "MOV_R"),
INST("0011100-10011---", Id::MOV_IMM, Type::Arithmetic, "MOV_IMM"),
INST("1111000011001---", Id::MOV_SYS, Type::Trivial, "MOV_SYS"),
INST("000000010000----", Id::MOV32_IMM, Type::ArithmeticImmediate, "MOV32_IMM"),
INST("0100110001100---", Id::FMNMX_C, Type::Arithmetic, "FMNMX_C"),
INST("0101110001100---", Id::FMNMX_R, Type::Arithmetic, "FMNMX_R"),
INST("0011100-01100---", Id::FMNMX_IMM, Type::Arithmetic, "FMNMX_IMM"),
INST("0100110000100---", Id::IMNMX_C, Type::ArithmeticInteger, "IMNMX_C"),
INST("0101110000100---", Id::IMNMX_R, Type::ArithmeticInteger, "IMNMX_R"),
INST("0011100-00100---", Id::IMNMX_IMM, Type::ArithmeticInteger, "IMNMX_IMM"),
INST("0100110000000---", Id::BFE_C, Type::Bfe, "BFE_C"),
INST("0101110000000---", Id::BFE_R, Type::Bfe, "BFE_R"),
INST("0011100-00000---", Id::BFE_IMM, Type::Bfe, "BFE_IMM"),
INST("0011011-11110---", Id::BFI_IMM_R, Type::Bfi, "BFI_IMM_R"),
INST("0100110001000---", Id::LOP_C, Type::ArithmeticInteger, "LOP_C"),
INST("0101110001000---", Id::LOP_R, Type::ArithmeticInteger, "LOP_R"),
INST("0011100001000---", Id::LOP_IMM, Type::ArithmeticInteger, "LOP_IMM"),
INST("000001----------", Id::LOP32I, Type::ArithmeticIntegerImmediate, "LOP32I"),
INST("0000001---------", Id::LOP3_C, Type::ArithmeticInteger, "LOP3_C"),
INST("0101101111100---", Id::LOP3_R, Type::ArithmeticInteger, "LOP3_R"),
INST("0011110---------", Id::LOP3_IMM, Type::ArithmeticInteger, "LOP3_IMM"),
INST("0100110001001---", Id::SHL_C, Type::Shift, "SHL_C"),
INST("0101110001001---", Id::SHL_R, Type::Shift, "SHL_R"),
INST("0011100-01001---", Id::SHL_IMM, Type::Shift, "SHL_IMM"),
INST("0100110000101---", Id::SHR_C, Type::Shift, "SHR_C"),
INST("0101110000101---", Id::SHR_R, Type::Shift, "SHR_R"),
INST("0011100-00101---", Id::SHR_IMM, Type::Shift, "SHR_IMM"),
INST("0100110011100---", Id::I2I_C, Type::Conversion, "I2I_C"),
INST("0101110011100---", Id::I2I_R, Type::Conversion, "I2I_R"),
INST("01110001-1000---", Id::I2I_IMM, Type::Conversion, "I2I_IMM"),
INST("0100110010111---", Id::I2F_C, Type::Conversion, "I2F_C"),
INST("0101110010111---", Id::I2F_R, Type::Conversion, "I2F_R"),
INST("0011100-10111---", Id::I2F_IMM, Type::Conversion, "I2F_IMM"),
INST("01011000--------", Id::FSET_R, Type::FloatSet, "FSET_R"),
INST("0100100---------", Id::FSET_C, Type::FloatSet, "FSET_C"),
INST("0011000---------", Id::FSET_IMM, Type::FloatSet, "FSET_IMM"),
INST("010010111011----", Id::FSETP_C, Type::FloatSetPredicate, "FSETP_C"),
INST("010110111011----", Id::FSETP_R, Type::FloatSetPredicate, "FSETP_R"),
INST("0011011-1011----", Id::FSETP_IMM, Type::FloatSetPredicate, "FSETP_IMM"),
INST("010010110110----", Id::ISETP_C, Type::IntegerSetPredicate, "ISETP_C"),
INST("010110110110----", Id::ISETP_R, Type::IntegerSetPredicate, "ISETP_R"),
INST("0011011-0110----", Id::ISETP_IMM, Type::IntegerSetPredicate, "ISETP_IMM"),
INST("010110110101----", Id::ISET_R, Type::IntegerSet, "ISET_R"),
INST("010010110101----", Id::ISET_C, Type::IntegerSet, "ISET_C"),
INST("0011011-0101----", Id::ISET_IMM, Type::IntegerSet, "ISET_IMM"),
INST("0101000010001---", Id::PSET, Type::PredicateSetRegister, "PSET"),
INST("0101000010010---", Id::PSETP, Type::PredicateSetPredicate, "PSETP"),
INST("010100001010----", Id::CSETP, Type::PredicateSetPredicate, "CSETP"),
INST("0011011-00------", Id::XMAD_IMM, Type::Xmad, "XMAD_IMM"),
INST("0100111---------", Id::XMAD_CR, Type::Xmad, "XMAD_CR"),
INST("010100010-------", Id::XMAD_RC, Type::Xmad, "XMAD_RC"),
INST("0101101100------", Id::XMAD_RR, Type::Xmad, "XMAD_RR"),
};
#undef INST
std::stable_sort(table.begin(), table.end(), [](const auto& a, const auto& b) {
// If a matcher has more bits in its mask it is more specific, so it
// should come first.
return std::bitset<16>(a.GetMask()).count() > std::bitset<16>(b.GetMask()).count();
});
return table;
}
};
} // namespace Tegra::Shader