yuzu-mainline/src/tests/core/core_timing.cpp
bunnei ec0ce96c56
core_timing: Use better reference tracking for EventType. (#3159)
* core_timing: Use better reference tracking for EventType.

- Moves ownership of the event to the caller, ensuring we don't fire events for destroyed objects.
- Removes need for unique names - we won't be using this for save states anyways.
2019-11-26 21:48:56 -05:00

157 lines
5.2 KiB
C++

// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <catch2/catch.hpp>
#include <array>
#include <bitset>
#include <cstdlib>
#include <memory>
#include <string>
#include "common/file_util.h"
#include "core/core.h"
#include "core/core_timing.h"
// Numbers are chosen randomly to make sure the correct one is given.
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
static std::bitset<CB_IDS.size()> callbacks_ran_flags;
static u64 expected_callback = 0;
static s64 lateness = 0;
template <unsigned int IDX>
void CallbackTemplate(u64 userdata, s64 cycles_late) {
static_assert(IDX < CB_IDS.size(), "IDX out of range");
callbacks_ran_flags.set(IDX);
REQUIRE(CB_IDS[IDX] == userdata);
REQUIRE(CB_IDS[IDX] == expected_callback);
REQUIRE(lateness == cycles_late);
}
static u64 callbacks_done = 0;
void EmptyCallback(u64 userdata, s64 cycles_late) {
++callbacks_done;
}
struct ScopeInit final {
ScopeInit() {
core_timing.Initialize();
}
~ScopeInit() {
core_timing.Shutdown();
}
Core::Timing::CoreTiming core_timing;
};
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
int expected_lateness = 0, int cpu_downcount = 0) {
callbacks_ran_flags = 0;
expected_callback = CB_IDS[idx];
lateness = expected_lateness;
// Pretend we executed X cycles of instructions.
core_timing.SwitchContext(context);
core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
core_timing.Advance();
core_timing.SwitchContext((context + 1) % 4);
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
}
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
ScopeInit guard;
auto& core_timing = guard.core_timing;
std::shared_ptr<Core::Timing::EventType> cb_a =
Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
std::shared_ptr<Core::Timing::EventType> cb_b =
Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
std::shared_ptr<Core::Timing::EventType> cb_c =
Core::Timing::CreateEvent("callbackC", CallbackTemplate<2>);
std::shared_ptr<Core::Timing::EventType> cb_d =
Core::Timing::CreateEvent("callbackD", CallbackTemplate<3>);
std::shared_ptr<Core::Timing::EventType> cb_e =
Core::Timing::CreateEvent("callbackE", CallbackTemplate<4>);
// Enter slice 0
core_timing.ResetRun();
// D -> B -> C -> A -> E
core_timing.SwitchContext(0);
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
REQUIRE(1000 == core_timing.GetDowncount());
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
REQUIRE(500 == core_timing.GetDowncount());
core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
REQUIRE(500 == core_timing.GetDowncount());
core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
REQUIRE(100 == core_timing.GetDowncount());
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
REQUIRE(100 == core_timing.GetDowncount());
AdvanceAndCheck(core_timing, 3, 0);
AdvanceAndCheck(core_timing, 1, 1);
AdvanceAndCheck(core_timing, 2, 2);
AdvanceAndCheck(core_timing, 0, 3);
AdvanceAndCheck(core_timing, 4, 0);
}
TEST_CASE("CoreTiming[FairSharing]", "[core]") {
ScopeInit guard;
auto& core_timing = guard.core_timing;
std::shared_ptr<Core::Timing::EventType> empty_callback =
Core::Timing::CreateEvent("empty_callback", EmptyCallback);
callbacks_done = 0;
u64 MAX_CALLBACKS = 10;
for (std::size_t i = 0; i < 10; i++) {
core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
}
const s64 advances = MAX_SLICE_LENGTH / 10;
core_timing.ResetRun();
u64 current_time = core_timing.GetTicks();
bool keep_running{};
do {
keep_running = false;
for (u32 active_core = 0; active_core < 4; ++active_core) {
core_timing.SwitchContext(active_core);
if (core_timing.CanCurrentContextRun()) {
core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
core_timing.Advance();
}
keep_running |= core_timing.CanCurrentContextRun();
}
} while (keep_running);
u64 current_time_2 = core_timing.GetTicks();
REQUIRE(MAX_CALLBACKS == callbacks_done);
REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
}
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
ScopeInit guard;
auto& core_timing = guard.core_timing;
std::shared_ptr<Core::Timing::EventType> cb_a =
Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
std::shared_ptr<Core::Timing::EventType> cb_b =
Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
// Enter slice 0
core_timing.ResetRun();
core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
AdvanceAndCheck(core_timing, 1, 1, 50, -50);
}