keys: Break up dump_keys, begin Mariko support

This commit is contained in:
shchmue 2020-12-04 13:07:46 -07:00
parent 5d101cad50
commit 423a5640be
3 changed files with 191 additions and 172 deletions

View file

@ -14,8 +14,7 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
static u8 zeros[0x10] = {0}; // Sha256 hash of the null string.
static u8 null_hash[0x20] = { static u8 null_hash[0x20] = {
0xE3, 0xB0, 0xC4, 0x42, 0x98, 0xFC, 0x1C, 0x14, 0x9A, 0xFB, 0xF4, 0xC8, 0x99, 0x6F, 0xB9, 0x24, 0xE3, 0xB0, 0xC4, 0x42, 0x98, 0xFC, 0x1C, 0x14, 0x9A, 0xFB, 0xF4, 0xC8, 0x99, 0x6F, 0xB9, 0x24,
0x27, 0xAE, 0x41, 0xE4, 0x64, 0x9B, 0x93, 0x4C, 0xA4, 0x95, 0x99, 0x1B, 0x78, 0x52, 0xB8, 0x55}; 0x27, 0xAE, 0x41, 0xE4, 0x64, 0x9B, 0x93, 0x4C, 0xA4, 0x95, 0x99, 0x1B, 0x78, 0x52, 0xB8, 0x55};

View file

@ -71,7 +71,7 @@ static ALWAYS_INLINE u32 _read_be_u32(const void *buffer, u32 offset) {
} }
// key functions // key functions
static int _key_exists(const void *data) { return memcmp(data, zeros, 0x10) != 0; }; static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; };
static void _save_key(const char *name, const void *data, u32 len, char *outbuf); static void _save_key(const char *name, const void *data, u32 len, char *outbuf);
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf); static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed); static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed);
@ -94,6 +94,114 @@ static ALWAYS_INLINE u32 _get_tsec_fw_size(tsec_key_data_t *key_data) {
return key_data->blob0_size + sizeof(tsec_key_data_t) + key_data->blob1_size + key_data->blob2_size + key_data->blob3_size + key_data->blob4_size; return key_data->blob0_size + sizeof(tsec_key_data_t) + key_data->blob1_size + key_data->blob2_size + key_data->blob3_size + key_data->blob4_size;
} }
#define RELOC_META_OFF 0x7C
static bool _handle_sept(void *tsec_fw, u32 tsec_size, u32 kb, void *out_key) {
sd_mount();
if (!f_stat("sd:/sept/payload.bak", NULL)) {
if (f_unlink("sd:/sept/payload.bin"))
gfx_printf("%kNote: no payload.bin already in /sept\n", colors[(color_idx++) % 6]);
f_rename("sd:/sept/payload.bak", "sd:/sept/payload.bin");
}
if (!h_cfg.sept_run) {
// bundle lp0 fw for sept instead of loading it from SD as hekate does
sdram_lp0_save_params(sdram_get_params_patched());
FIL fp;
if (f_stat("sd:/sept", NULL)) {
EPRINTF("On firmware 7.x+ but Sept missing.\nSkipping new key derivation...");
return true;
}
// backup post-reboot payload
if (!f_stat("sd:/sept/payload.bin", NULL)) {
if (f_rename("sd:/sept/payload.bin", "sd:/sept/payload.bak")) {
EPRINTF("Unable to backup payload.bin.");
return false;
}
}
// write self to payload.bin to run again when sept finishes
volatile reloc_meta_t *relocator = (reloc_meta_t *)(IPL_LOAD_ADDR + RELOC_META_OFF);
u32 payload_size = relocator->end - IPL_LOAD_ADDR;
if (f_open(&fp, "sd:/sept/payload.bin", FA_CREATE_NEW | FA_WRITE)) {
EPRINTF("Unable to open /sept/payload.bin to write.");
return false;
}
gfx_printf("%kWrite self to /sept/payload.bin...", colors[(color_idx++) % 6]);
if (f_write(&fp, (u8 *)IPL_LOAD_ADDR, payload_size, NULL)) {
EPRINTF("Unable to write self to /sept/payload.bin.");
f_close(&fp);
return false;
}
gfx_printf(" done");
f_close(&fp);
gfx_printf("%k\nFirmware 7.x or higher detected.\n\n", colors[(color_idx++) % 6]);
gfx_printf("%kRenamed /sept/payload.bin", colors[(color_idx++) % 6]);
gfx_printf("\n to /sept/payload.bak\n\n");
gfx_printf("%kCopied self to /sept/payload.bin\n", colors[(color_idx++) % 6]);
sdmmc_storage_end(&emmc_storage);
if (!reboot_to_sept((u8 *)tsec_fw, tsec_size, kb)) {
return false;
}
} else {
se_aes_key_read(se_key_acc_ctrl_get(12) == 0x6A ? 13 : 12, out_key, AES_128_KEY_SIZE);
}
return true;
}
static bool _handle_tsec(tsec_ctxt_t *tsec_ctxt, u32 kb, void *out_master_key, void *out_tsec_keys, u32 out_tsec_keys_size) {
tsec_ctxt->fw = _find_tsec_fw(tsec_ctxt->pkg1);
if (!tsec_ctxt->fw) {
EPRINTF("Unable to locate TSEC firmware.");
return false;
}
minerva_periodic_training();
tsec_ctxt->size = _get_tsec_fw_size((tsec_key_data_t *)(tsec_ctxt->fw + TSEC_KEY_DATA_OFFSET));
if (tsec_ctxt->size > PKG1_MAX_SIZE) {
EPRINTF("Unexpected TSEC firmware size.");
return false;
}
if (kb >= KB_FIRMWARE_VERSION_700 && !h_cfg.t210b01) {
if (!_handle_sept(tsec_ctxt->fw, tsec_ctxt->size, kb, out_master_key)) {
return false;
}
}
if (kb == KB_FIRMWARE_VERSION_620) {
u8 *tsec_paged = (u8 *)page_alloc(3);
memcpy(tsec_paged, tsec_ctxt->fw, tsec_ctxt->size);
tsec_ctxt->fw = tsec_paged;
}
int res = 0;
u32 retries = 0;
mc_disable_ahb_redirect();
while (tsec_query(out_tsec_keys, kb, tsec_ctxt) < 0) {
memset(out_tsec_keys, 0, out_tsec_keys_size);
retries++;
if (retries > 15) {
res = -1;
break;
}
}
mc_enable_ahb_redirect();
if (res < 0) {
EPRINTFARGS("ERROR %x dumping TSEC.\n", res);
return false;
}
TPRINTFARGS("%kTSEC key(s)... ", colors[(color_idx++) % 6]);
return true;
}
static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) { static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) {
FIL fp; FIL fp;
u64 br = buf_size; u64 br = buf_size;
@ -221,33 +329,32 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
return true; return true;
} }
#define RELOC_META_OFF 0x7C
void dump_keys() { void dump_keys() {
u8 temp_key[0x10], u8 temp_key[AES_128_KEY_SIZE],
bis_key[4][0x20] = {0}, bis_key[4][AES_128_KEY_SIZE * 2] = {0},
device_key[0x10] = {0}, device_key[AES_128_KEY_SIZE] = {0},
device_key_4x[0x10] = {0}, device_key_4x[AES_128_KEY_SIZE] = {0},
sd_seed[0x10] = {0}, sd_seed[AES_128_KEY_SIZE] = {0},
// FS-related keys // FS-related keys
header_key[0x20] = {0}, header_key[AES_128_KEY_SIZE * 2] = {0},
save_mac_key[0x10] = {0}, save_mac_key[AES_128_KEY_SIZE] = {0},
// other sysmodule keys // other sysmodule keys
eticket_rsa_kek[0x10] = {0}, eticket_rsa_kek[AES_128_KEY_SIZE] = {0},
eticket_rsa_kek_personalized[0x10] = {0}, eticket_rsa_kek_personalized[AES_128_KEY_SIZE] = {0},
ssl_rsa_kek[0x10] = {0}, ssl_rsa_kek[AES_128_KEY_SIZE] = {0},
// keyblob-derived families // keyblob-derived families
keyblob_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, keyblob_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE] = {0},
keyblob_mac_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE] = {0},
package1_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, package1_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE] = {0},
// master key-derived families // master key-derived families
key_area_key[3][KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, key_area_key[3][KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE] = {0},
master_kek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, master_kek[KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE] = {0},
master_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, master_key[KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE] = {0},
package2_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, package2_key[KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE] = {0},
titlekek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}; titlekek[KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE] = {0},
tsec_keys[AES_128_KEY_SIZE * 2] = {0};
keyblob_t keyblob[KB_FIRMWARE_VERSION_600+1] = {0}; keyblob_t keyblob[KB_FIRMWARE_VERSION_600 + 1] = {0};
sd_mount(); sd_mount();
@ -264,9 +371,7 @@ void dump_keys() {
start_time = get_tmr_us(); start_time = get_tmr_us();
u32 begin_time = get_tmr_us(); u32 begin_time = get_tmr_us();
u32 retries = 0;
tsec_ctxt_t tsec_ctxt;
sdmmc_t sdmmc; sdmmc_t sdmmc;
if (emummc_storage_init_mmc(&emmc_storage, &sdmmc)) { if (emummc_storage_init_mmc(&emmc_storage, &sdmmc)) {
@ -291,113 +396,25 @@ void dump_keys() {
goto out_wait; goto out_wait;
} }
tsec_ctxt.fw = _find_tsec_fw(pkg1);
if (!tsec_ctxt.fw) {
EPRINTF("Unable to locate TSEC firmware.");
goto out_wait;
}
minerva_periodic_training();
tsec_ctxt.pkg1 = pkg1;
tsec_ctxt.size = _get_tsec_fw_size((tsec_key_data_t *)(tsec_ctxt.fw + TSEC_KEY_DATA_OFFSET));
if (tsec_ctxt.size > PKG1_MAX_SIZE) {
EPRINTF("Unexpected TSEC firmware size.");
goto out_wait;
}
u32 derivable_key_count = pkg1_id->kb >= KB_FIRMWARE_VERSION_620 ? pkg1_id->kb + 1 : 6; u32 derivable_key_count = pkg1_id->kb >= KB_FIRMWARE_VERSION_620 ? pkg1_id->kb + 1 : 6;
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_700) { if (!h_cfg.t210b01) {
sd_mount(); tsec_ctxt_t tsec_ctxt;
if (!f_stat("sd:/sept/payload.bak", NULL)) { tsec_ctxt.pkg1 = pkg1;
if (f_unlink("sd:/sept/payload.bin")) if (!_handle_tsec(&tsec_ctxt, pkg1_id->kb, master_key[KB_FIRMWARE_VERSION_MAX], tsec_keys, sizeof(tsec_keys))) {
gfx_printf("%kNote: no payload.bin already in /sept\n", colors[(color_idx++) % 6]); free(pkg1);
f_rename("sd:/sept/payload.bak", "sd:/sept/payload.bin"); goto out_wait;
}
if (!h_cfg.sept_run) {
// bundle lp0 fw for sept instead of loading it from SD as hekate does
sdram_lp0_save_params(sdram_get_params_patched());
FIL fp;
if (f_stat("sd:/sept", NULL)) {
EPRINTF("On firmware 7.x+ but Sept missing.\nSkipping new key derivation...");
goto get_tsec;
}
// backup post-reboot payload
if (!f_stat("sd:/sept/payload.bin", NULL)) {
if (f_rename("sd:/sept/payload.bin", "sd:/sept/payload.bak")) {
EPRINTF("Unable to backup payload.bin.");
goto out_wait;
}
}
// write self to payload.bin to run again when sept finishes
volatile reloc_meta_t *relocator = (reloc_meta_t *)(IPL_LOAD_ADDR + RELOC_META_OFF);
u32 payload_size = relocator->end - IPL_LOAD_ADDR;
if (f_open(&fp, "sd:/sept/payload.bin", FA_CREATE_NEW | FA_WRITE)) {
EPRINTF("Unable to open /sept/payload.bin to write.");
goto out_wait;
}
gfx_printf("%kWrite self to /sept/payload.bin...", colors[(color_idx++) % 6]);
if (f_write(&fp, (u8 *)IPL_LOAD_ADDR, payload_size, NULL)) {
EPRINTF("Unable to write self to /sept/payload.bin.");
f_close(&fp);
goto out_wait;
}
gfx_printf(" done");
f_close(&fp);
gfx_printf("%k\nFirmware 7.x or higher detected.\n\n", colors[(color_idx++) % 6]);
gfx_printf("%kRenamed /sept/payload.bin", colors[(color_idx++) % 6]);
gfx_printf("\n to /sept/payload.bak\n\n");
gfx_printf("%kCopied self to /sept/payload.bin\n", colors[(color_idx++) % 6]);
sdmmc_storage_end(&emmc_storage);
if (!reboot_to_sept((u8 *)tsec_ctxt.fw, tsec_ctxt.size, pkg1_id->kb))
goto out_wait;
} else {
se_aes_key_read(se_key_acc_ctrl_get(12) == 0x6A ? 13 : 12, master_key[KB_FIRMWARE_VERSION_MAX], 0x10);
}
}
get_tsec: ;
u8 tsec_keys[0x10 * 2] = {0};
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) {
u8 *tsec_paged = (u8 *)page_alloc(3);
memcpy(tsec_paged, (void *)tsec_ctxt.fw, tsec_ctxt.size);
tsec_ctxt.fw = tsec_paged;
}
int res = 0;
mc_disable_ahb_redirect();
while (tsec_query(tsec_keys, pkg1_id->kb, &tsec_ctxt) < 0) {
memset(tsec_keys, 0x00, 0x20);
retries++;
if (retries > 15) {
res = -1;
break;
} }
} }
free(pkg1); free(pkg1);
mc_enable_ahb_redirect();
if (res < 0) {
EPRINTFARGS("ERROR %x dumping TSEC.\n", res);
goto out_wait;
}
TPRINTFARGS("%kTSEC key(s)... ", colors[(color_idx++) % 6]);
// Master key derivation // Master key derivation
// on firmware 6.2.0 only, tsec_query delivers the tsec_root_key // on firmware 6.2.0 only, tsec_query delivers the tsec_root_key
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620 && _key_exists(tsec_keys + 0x10)) { if (pkg1_id->kb == KB_FIRMWARE_VERSION_620 && _key_exists(tsec_keys + AES_128_KEY_SIZE)) {
se_aes_key_set(8, tsec_keys + 0x10, 0x10); // mkek6 = unwrap(mkeks6, tsecroot) se_aes_key_set(8, tsec_keys + AES_128_KEY_SIZE, AES_128_KEY_SIZE); // mkek6 = unwrap(mkeks6, tsecroot)
se_aes_crypt_block_ecb(8, 0, master_kek[6], master_kek_sources[0]); se_aes_crypt_block_ecb(8, 0, master_kek[6], master_kek_sources[0]);
se_aes_key_set(8, master_kek[6], 0x10); // mkey = unwrap(mkek, mks) se_aes_key_set(8, master_kek[6], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mks)
se_aes_crypt_block_ecb(8, 0, master_key[6], master_key_source); se_aes_crypt_block_ecb(8, 0, master_key[6], master_key_source);
} }
@ -405,10 +422,10 @@ get_tsec: ;
// derive all lower master keys in case keyblobs are bad // derive all lower master keys in case keyblobs are bad
if (_key_exists(master_key[pkg1_id->kb])) { if (_key_exists(master_key[pkg1_id->kb])) {
for (u32 i = pkg1_id->kb; i > 0; i--) { for (u32 i = pkg1_id->kb; i > 0; i--) {
se_aes_key_set(8, master_key[i], 0x10); se_aes_key_set(8, master_key[i], AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(8, 0, master_key[i-1], master_key_vectors[i]); se_aes_crypt_block_ecb(8, 0, master_key[i-1], master_key_vectors[i]);
} }
se_aes_key_set(8, master_key[0], 0x10); se_aes_key_set(8, master_key[0], AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(8, 0, temp_key, master_key_vectors[0]); se_aes_crypt_block_ecb(8, 0, temp_key, master_key_vectors[0]);
if (_key_exists(temp_key)) { if (_key_exists(temp_key)) {
EPRINTFARGS("Unable to derive master key. kb = %d.\n Put current sept files on SD and retry.", pkg1_id->kb); EPRINTFARGS("Unable to derive master key. kb = %d.\n Put current sept files on SD and retry.", pkg1_id->kb);
@ -418,16 +435,16 @@ get_tsec: ;
// handle sept version differences // handle sept version differences
for (u32 kb = KB_FIRMWARE_VERSION_MAX; kb >= KB_FIRMWARE_VERSION_620; kb--) { for (u32 kb = KB_FIRMWARE_VERSION_MAX; kb >= KB_FIRMWARE_VERSION_620; kb--) {
for (u32 i = kb; i > 0; i--) { for (u32 i = kb; i > 0; i--) {
se_aes_key_set(8, master_key[i], 0x10); se_aes_key_set(8, master_key[i], AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(8, 0, master_key[i-1], master_key_vectors[i]); se_aes_crypt_block_ecb(8, 0, master_key[i-1], master_key_vectors[i]);
} }
se_aes_key_set(8, master_key[0], 0x10); se_aes_key_set(8, master_key[0], AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(8, 0, temp_key, master_key_vectors[0]); se_aes_crypt_block_ecb(8, 0, temp_key, master_key_vectors[0]);
if (!_key_exists(temp_key)) { if (!_key_exists(temp_key)) {
break; break;
} }
memcpy(master_key[kb-1], master_key[kb], 0x10); memcpy(master_key[kb-1], master_key[kb], AES_128_KEY_SIZE);
memset(master_key[kb], 0, 0x10); memset(master_key[kb], 0, AES_128_KEY_SIZE);
} }
if (_key_exists(temp_key)) { if (_key_exists(temp_key)) {
EPRINTF("Unable to derive master keys via sept."); EPRINTF("Unable to derive master keys via sept.");
@ -438,14 +455,14 @@ get_tsec: ;
u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE); u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE);
encrypted_keyblob_t *current_keyblob = (encrypted_keyblob_t *)keyblob_block; encrypted_keyblob_t *current_keyblob = (encrypted_keyblob_t *)keyblob_block;
u8 keyblob_mac[0x10] = {0}; u8 keyblob_mac[AES_128_KEY_SIZE] = {0};
u32 sbk[4] = {FUSE(FUSE_PRIVATE_KEY0), FUSE(FUSE_PRIVATE_KEY1), u32 sbk[4] = {FUSE(FUSE_PRIVATE_KEY0), FUSE(FUSE_PRIVATE_KEY1),
FUSE(FUSE_PRIVATE_KEY2), FUSE(FUSE_PRIVATE_KEY3)}; FUSE(FUSE_PRIVATE_KEY2), FUSE(FUSE_PRIVATE_KEY3)};
se_aes_key_set(8, tsec_keys, sizeof(tsec_keys) / 2); se_aes_key_set(8, tsec_keys, sizeof(tsec_keys) / 2);
se_aes_key_set(9, sbk, sizeof(sbk)); se_aes_key_set(9, sbk, sizeof(sbk));
if (!emummc_storage_read(&emmc_storage, KEYBLOB_OFFSET / NX_EMMC_BLOCKSIZE, KB_FIRMWARE_VERSION_600 + 1, keyblob_block)) { if (!emummc_storage_read(&emmc_storage, KEYBLOB_OFFSET / NX_EMMC_BLOCKSIZE, KB_FIRMWARE_VERSION_600 + 1, keyblob_block)) {
EPRINTF("Unable to read keyblob."); EPRINTF("Unable to read keyblobs.");
} }
for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++, current_keyblob++) { for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++, current_keyblob++) {
@ -492,8 +509,8 @@ get_tsec: ;
if (key_generation) { if (key_generation) {
_get_device_key(8, temp_key, key_generation, device_key_4x, master_key[0]); _get_device_key(8, temp_key, key_generation, device_key_4x, master_key[0]);
} else } else
memcpy(temp_key, device_key, 0x10); memcpy(temp_key, device_key, AES_128_KEY_SIZE);
se_aes_key_set(8, temp_key, 0x10); se_aes_key_set(8, temp_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(8, 8, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey) se_aes_unwrap_key(8, 8, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey)
se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x00, bis_key_source[0] + 0x00); // bkey = unwrap(bkeys, kek) se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x00, bis_key_source[0] + 0x00); // bkey = unwrap(bkeys, kek)
se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x10, bis_key_source[0] + 0x10); se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x10, bis_key_source[0] + 0x10);
@ -529,7 +546,7 @@ get_tsec: ;
_generate_kek(8, key_area_key_sources[j], master_key[i], aes_kek_generation_source, NULL); _generate_kek(8, key_area_key_sources[j], master_key[i], aes_kek_generation_source, NULL);
se_aes_crypt_block_ecb(8, 0, key_area_key[j][i], aes_key_generation_source); se_aes_crypt_block_ecb(8, 0, key_area_key[j][i], aes_key_generation_source);
} }
se_aes_key_set(8, master_key[i], 0x10); se_aes_key_set(8, master_key[i], AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(8, 0, package2_key[i], package2_key_source); se_aes_crypt_block_ecb(8, 0, package2_key[i], package2_key_source);
se_aes_crypt_block_ecb(8, 0, titlekek[i], titlekek_source); se_aes_crypt_block_ecb(8, 0, titlekek[i], titlekek_source);
} }
@ -546,12 +563,12 @@ get_tsec: ;
// derive eticket_rsa_kek and ssl_rsa_kek // derive eticket_rsa_kek and ssl_rsa_kek
if (_key_exists(master_key[0])) { if (_key_exists(master_key[0])) {
for (u32 i = 0; i < 0x10; i++) for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i];
_generate_kek(7, eticket_rsa_kekek_source, master_key[0], temp_key, NULL); _generate_kek(7, eticket_rsa_kekek_source, master_key[0], temp_key, NULL);
se_aes_crypt_block_ecb(7, 0, eticket_rsa_kek, eticket_rsa_kek_source); se_aes_crypt_block_ecb(7, 0, eticket_rsa_kek, eticket_rsa_kek_source);
for (u32 i = 0; i < 0x10; i++) for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i]; temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i];
_generate_kek(7, ssl_rsa_kek_source_x, master_key[0], temp_key, NULL); _generate_kek(7, ssl_rsa_kek_source_x, master_key[0], temp_key, NULL);
se_aes_crypt_block_ecb(7, 0, ssl_rsa_kek, ssl_rsa_kek_source_y); se_aes_crypt_block_ecb(7, 0, ssl_rsa_kek, ssl_rsa_kek_source_y);
@ -559,18 +576,18 @@ get_tsec: ;
// Set BIS keys. // Set BIS keys.
// PRODINFO/PRODINFOF // PRODINFO/PRODINFOF
se_aes_key_set(0, bis_key[0] + 0x00, 0x10); se_aes_key_set(0, bis_key[0] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(1, bis_key[0] + 0x10, 0x10); se_aes_key_set(1, bis_key[0] + 0x10, AES_128_KEY_SIZE);
// SAFE // SAFE
se_aes_key_set(2, bis_key[1] + 0x00, 0x10); se_aes_key_set(2, bis_key[1] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(3, bis_key[1] + 0x10, 0x10); se_aes_key_set(3, bis_key[1] + 0x10, AES_128_KEY_SIZE);
// SYSTEM/USER // SYSTEM/USER
se_aes_key_set(4, bis_key[2] + 0x00, 0x10); se_aes_key_set(4, bis_key[2] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(5, bis_key[2] + 0x10, 0x10); se_aes_key_set(5, bis_key[2] + 0x10, AES_128_KEY_SIZE);
// Set header key for NCA decryption. // Set header key for NCA decryption.
se_aes_key_set(8, header_key + 0x00, 0x10); se_aes_key_set(8, header_key + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(9, header_key + 0x10, 0x10); se_aes_key_set(9, header_key + 0x10, AES_128_KEY_SIZE);
if (!emummc_storage_set_mmc_partition(&emmc_storage, EMMC_GPP)) { if (!emummc_storage_set_mmc_partition(&emmc_storage, EMMC_GPP)) {
EPRINTF("Unable to set partition."); EPRINTF("Unable to set partition.");
@ -605,7 +622,7 @@ get_tsec: ;
goto get_titlekeys; goto get_titlekeys;
} }
// get sd seed verification vector // get sd seed verification vector
if (f_read(&fp, temp_key, 0x10, &read_bytes) || read_bytes != 0x10) { if (f_read(&fp, temp_key, AES_128_KEY_SIZE, &read_bytes) || read_bytes != AES_128_KEY_SIZE) {
EPRINTF("Unable to read SD seed vector. Skipping."); EPRINTF("Unable to read SD seed vector. Skipping.");
f_close(&fp); f_close(&fp);
goto get_titlekeys; goto get_titlekeys;
@ -660,9 +677,9 @@ get_titlekeys:
if (keypair_generation) { if (keypair_generation) {
keypair_generation--; keypair_generation--;
for (u32 i = 0; i < 0x10; i++) for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i];
u8 temp_device_key[0x10] = {0}; u8 temp_device_key[AES_128_KEY_SIZE] = {0};
_get_device_key(7, temp_device_key, keypair_generation, device_key_4x, master_key[0]); _get_device_key(7, temp_device_key, keypair_generation, device_key_4x, master_key[0]);
_generate_kek(7, eticket_rsa_kekek_source, temp_device_key, temp_key, NULL); _generate_kek(7, eticket_rsa_kekek_source, temp_device_key, temp_key, NULL);
se_aes_crypt_block_ecb(7, 0, eticket_rsa_kek_personalized, eticket_rsa_kek_source); se_aes_crypt_block_ecb(7, 0, eticket_rsa_kek_personalized, eticket_rsa_kek_source);
@ -748,10 +765,10 @@ key_output: ;
SAVE_KEY(package2_key_source); SAVE_KEY(package2_key_source);
SAVE_KEY(per_console_key_source); SAVE_KEY(per_console_key_source);
SAVE_KEY(retail_specific_aes_key_source); SAVE_KEY(retail_specific_aes_key_source);
for (u32 i = 0; i < 0x10; i++) for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i];
SAVE_KEY_VAR(rsa_oaep_kek_generation_source, temp_key); SAVE_KEY_VAR(rsa_oaep_kek_generation_source, temp_key);
for (u32 i = 0; i < 0x10; i++) for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i]; temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i];
SAVE_KEY_VAR(rsa_private_kek_generation_source, temp_key); SAVE_KEY_VAR(rsa_private_kek_generation_source, temp_key);
SAVE_KEY(save_mac_kek_source); SAVE_KEY(save_mac_kek_source);
@ -770,9 +787,9 @@ key_output: ;
SAVE_KEY(ssl_rsa_kek_source_y); SAVE_KEY(ssl_rsa_kek_source_y);
SAVE_KEY_FAMILY(titlekek, 0); SAVE_KEY_FAMILY(titlekek, 0);
SAVE_KEY(titlekek_source); SAVE_KEY(titlekek_source);
_save_key("tsec_key", tsec_keys, 0x10, text_buffer); _save_key("tsec_key", tsec_keys, AES_128_KEY_SIZE, text_buffer);
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) if (pkg1_id->kb == KB_FIRMWARE_VERSION_620)
_save_key("tsec_root_key", tsec_keys + 0x10, 0x10, text_buffer); _save_key("tsec_root_key", tsec_keys + AES_128_KEY_SIZE, AES_128_KEY_SIZE, text_buffer);
end_time = get_tmr_us(); end_time = get_tmr_us();
gfx_printf("\n%k Found %d keys.\n\n", colors[(color_idx++) % 6], _key_count); gfx_printf("\n%k Found %d keys.\n\n", colors[(color_idx++) % 6], _key_count);
@ -797,10 +814,10 @@ key_output: ;
titlekey_text_buffer_t *titlekey_text = (titlekey_text_buffer_t *)text_buffer; titlekey_text_buffer_t *titlekey_text = (titlekey_text_buffer_t *)text_buffer;
for (u32 i = 0; i < _titlekey_count; i++) { for (u32 i = 0; i < _titlekey_count; i++) {
for (u32 j = 0; j < 0x10; j++) for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
sprintf(&titlekey_text[i].rights_id[j * 2], "%02x", titlekey_buffer->rights_ids[i][j]); sprintf(&titlekey_text[i].rights_id[j * 2], "%02x", titlekey_buffer->rights_ids[i][j]);
sprintf(titlekey_text[i].equals, " = "); sprintf(titlekey_text[i].equals, " = ");
for (u32 j = 0; j < 0x10; j++) for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
sprintf(&titlekey_text[i].titlekey[j * 2], "%02x", titlekey_buffer->titlekeys[i][j]); sprintf(&titlekey_text[i].titlekey[j * 2], "%02x", titlekey_buffer->titlekeys[i][j]);
sprintf(titlekey_text[i].newline, "\n"); sprintf(titlekey_text[i].newline, "\n");
} }
@ -847,7 +864,7 @@ static void _generate_kek(u32 ks, const void *key_source, void *master_key, cons
if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed)) if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed))
return; return;
se_aes_key_set(ks, master_key, 0x10); se_aes_key_set(ks, master_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, kek_seed); se_aes_unwrap_key(ks, ks, kek_seed);
se_aes_unwrap_key(ks, ks, key_source); se_aes_unwrap_key(ks, ks, key_source);
if (key_seed && _key_exists(key_seed)) if (key_seed && _key_exists(key_seed))
@ -856,28 +873,28 @@ static void _generate_kek(u32 ks, const void *key_source, void *master_key, cons
static void _get_device_key(u32 ks, void *out_device_key, u32 revision, const void *device_key, const void *master_key) { static void _get_device_key(u32 ks, void *out_device_key, u32 revision, const void *device_key, const void *master_key) {
if (revision < KB_FIRMWARE_VERSION_400) if (revision < KB_FIRMWARE_VERSION_400)
memcpy(out_device_key, device_key, 0x10); memcpy(out_device_key, device_key, AES_128_KEY_SIZE);
revision -= KB_FIRMWARE_VERSION_400; revision -= KB_FIRMWARE_VERSION_400;
u8 temp_key[0x10] = {0}; u8 temp_key[AES_128_KEY_SIZE] = {0};
se_aes_key_set(ks, device_key, 0x10); se_aes_key_set(ks, device_key, AES_128_KEY_SIZE);
se_aes_crypt_ecb(ks, 0, temp_key, 0x10, device_master_key_source_sources[revision], 0x10); se_aes_crypt_ecb(ks, 0, temp_key, AES_128_KEY_SIZE, device_master_key_source_sources[revision], AES_128_KEY_SIZE);
se_aes_key_set(ks, master_key, 0x10); se_aes_key_set(ks, master_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, device_master_kek_sources[revision]); se_aes_unwrap_key(ks, ks, device_master_kek_sources[revision]);
se_aes_crypt_ecb(ks, 0, out_device_key, 0x10, temp_key, 0x10); se_aes_crypt_ecb(ks, 0, out_device_key, AES_128_KEY_SIZE, temp_key, AES_128_KEY_SIZE);
} }
static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) { static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) {
u8 plaintext[0x100] = {0}, ciphertext[0x100] = {0}, work[0x100] = {0}; u8 plaintext[RSA_2048_KEY_SIZE] = {0}, ciphertext[RSA_2048_KEY_SIZE] = {0}, work[RSA_2048_KEY_SIZE] = {0};
// 0xCAFEBABE // 0xCAFEBABE
plaintext[0xfc] = 0xca; plaintext[0xfd] = 0xfe; plaintext[0xfe] = 0xba; plaintext[0xff] = 0xbe; plaintext[0xfc] = 0xca; plaintext[0xfd] = 0xfe; plaintext[0xfe] = 0xba; plaintext[0xff] = 0xbe;
se_rsa_key_set(0, modulus, 0x100, private_exponent, 0x100); se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, private_exponent, RSA_2048_KEY_SIZE);
se_rsa_exp_mod(0, ciphertext, 0x100, plaintext, 0x100); se_rsa_exp_mod(0, ciphertext, RSA_2048_KEY_SIZE, plaintext, RSA_2048_KEY_SIZE);
se_rsa_key_set(0, modulus, 0x100, public_exponent, 4); se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, public_exponent, 4);
se_rsa_exp_mod(0, work, 0x100, ciphertext, 0x100); se_rsa_exp_mod(0, work, RSA_2048_KEY_SIZE, ciphertext, RSA_2048_KEY_SIZE);
return !memcmp(plaintext, work, 0x100); return !memcmp(plaintext, work, RSA_2048_KEY_SIZE);
} }

View file

@ -19,13 +19,16 @@
#include <utils/types.h> #include <utils/types.h>
#define AES_128_KEY_SIZE 16
#define RSA_2048_KEY_SIZE 256
// only tickets of type Rsa2048Sha256 are expected // only tickets of type Rsa2048Sha256 are expected
typedef struct { typedef struct {
u32 signature_type; // always 0x10004 u32 signature_type; // always 0x10004
u8 signature[0x100]; u8 signature[RSA_2048_KEY_SIZE];
u8 sig_padding[0x3C]; u8 sig_padding[0x3C];
char issuer[0x40]; char issuer[0x40];
u8 titlekey_block[0x100]; u8 titlekey_block[RSA_2048_KEY_SIZE];
u8 format_version; u8 format_version;
u8 titlekey_type; u8 titlekey_type;
u16 ticket_version; u16 ticket_version;
@ -59,8 +62,8 @@ typedef struct {
} titlekey_buffer_t; } titlekey_buffer_t;
typedef struct { typedef struct {
u8 private_exponent[0x100]; u8 private_exponent[RSA_2048_KEY_SIZE];
u8 modulus[0x100]; u8 modulus[RSA_2048_KEY_SIZE];
u8 public_exponent[4]; u8 public_exponent[4];
u8 reserved[0x14]; u8 reserved[0x14];
u64 device_id; u64 device_id;
@ -68,9 +71,9 @@ typedef struct {
} rsa_keypair_t; } rsa_keypair_t;
typedef struct { typedef struct {
u8 master_kek[0x10]; u8 master_kek[AES_128_KEY_SIZE];
u8 data[0x70]; u8 data[0x70];
u8 package1_key[0x10]; u8 package1_key[AES_128_KEY_SIZE];
} keyblob_t; } keyblob_t;
typedef struct { typedef struct {