mirror of
https://github.com/shchmue/Lockpick_RCM.git
synced 2024-12-22 14:25:27 +00:00
Further improve readability
This commit is contained in:
parent
cc4f8bf1f6
commit
c7d90ec8ca
70
bdk/sec/se.c
70
bdk/sec/se.c
|
@ -718,76 +718,6 @@ out:;
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
// _mgf1_xor() and rsa_oaep_decode were derived from Atmosphère
|
|
||||||
static void _mgf1_xor(void *masked, u32 masked_size, const void *seed, u32 seed_size)
|
|
||||||
{
|
|
||||||
u8 cur_hash[0x20] __attribute__((aligned(4)));
|
|
||||||
u8 hash_buf[0xe4] __attribute__((aligned(4)));
|
|
||||||
|
|
||||||
u32 hash_buf_size = seed_size + 4;
|
|
||||||
memcpy(hash_buf, seed, seed_size);
|
|
||||||
u32 round_num = 0;
|
|
||||||
|
|
||||||
u8 *p_out = (u8 *)masked;
|
|
||||||
|
|
||||||
while (masked_size) {
|
|
||||||
u32 cur_size = MIN(masked_size, 0x20);
|
|
||||||
|
|
||||||
for (u32 i = 0; i < 4; i++)
|
|
||||||
hash_buf[seed_size + 3 - i] = (round_num >> (8 * i)) & 0xff;
|
|
||||||
round_num++;
|
|
||||||
|
|
||||||
se_calc_sha256_oneshot(cur_hash, hash_buf, hash_buf_size);
|
|
||||||
|
|
||||||
for (unsigned int i = 0; i < cur_size; i++) {
|
|
||||||
*p_out ^= cur_hash[i];
|
|
||||||
p_out++;
|
|
||||||
}
|
|
||||||
|
|
||||||
masked_size -= cur_size;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
u32 se_rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size)
|
|
||||||
{
|
|
||||||
if (dst_size <= 0 || buf_size < 0x43 || label_digest_size != 0x20)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
bool is_valid = buf[0] == 0;
|
|
||||||
|
|
||||||
u32 db_len = buf_size - 0x21;
|
|
||||||
u8 *seed = buf + 1;
|
|
||||||
u8 *db = seed + 0x20;
|
|
||||||
_mgf1_xor(seed, 0x20, db, db_len);
|
|
||||||
_mgf1_xor(db, db_len, seed, 0x20);
|
|
||||||
|
|
||||||
is_valid &= memcmp(label_digest, db, 0x20) ? 0 : 1;
|
|
||||||
|
|
||||||
db += 0x20;
|
|
||||||
db_len -= 0x20;
|
|
||||||
|
|
||||||
int msg_ofs = 0;
|
|
||||||
int looking_for_one = 1;
|
|
||||||
int invalid_db_padding = 0;
|
|
||||||
int is_zero;
|
|
||||||
int is_one;
|
|
||||||
for (int i = 0; i < db_len; )
|
|
||||||
{
|
|
||||||
is_zero = (db[i] == 0);
|
|
||||||
is_one = (db[i] == 1);
|
|
||||||
msg_ofs += (looking_for_one & is_one) * (++i);
|
|
||||||
looking_for_one &= ~is_one;
|
|
||||||
invalid_db_padding |= (looking_for_one & ~is_zero);
|
|
||||||
}
|
|
||||||
|
|
||||||
is_valid &= (invalid_db_padding == 0);
|
|
||||||
|
|
||||||
const u32 msg_size = MIN(dst_size, is_valid * (db_len - msg_ofs));
|
|
||||||
memcpy(dst, db + msg_ofs, msg_size);
|
|
||||||
|
|
||||||
return msg_size;
|
|
||||||
}
|
|
||||||
|
|
||||||
void se_get_aes_keys(u8 *buf, u8 *keys, u32 keysize)
|
void se_get_aes_keys(u8 *buf, u8 *keys, u32 keysize)
|
||||||
{
|
{
|
||||||
u8 *aligned_buf = (u8 *)ALIGN((u32)buf, 0x40);
|
u8 *aligned_buf = (u8 *)ALIGN((u32)buf, 0x40);
|
||||||
|
|
|
@ -49,6 +49,5 @@ int se_calc_sha256(void *hash, u32 *msg_left, const void *src, u32 src_size, u64
|
||||||
int se_calc_sha256_oneshot(void *hash, const void *src, u32 src_size);
|
int se_calc_sha256_oneshot(void *hash, const void *src, u32 src_size);
|
||||||
int se_calc_sha256_finalize(void *hash, u32 *msg_left);
|
int se_calc_sha256_finalize(void *hash, u32 *msg_left);
|
||||||
int se_calc_hmac_sha256(void *dst, const void *src, u32 src_size, const void *key, u32 key_size);
|
int se_calc_hmac_sha256(void *dst, const void *src, u32 src_size, const void *key, u32 key_size);
|
||||||
u32 se_rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size);
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -230,17 +230,3 @@ void power_set_state_ex(void *param)
|
||||||
power_state_t *state = (power_state_t *)param;
|
power_state_t *state = (power_state_t *)param;
|
||||||
power_set_state(*state);
|
power_set_state(*state);
|
||||||
}
|
}
|
||||||
|
|
||||||
u32 read_le_u32(const void *buffer, u32 offset) {
|
|
||||||
return (*(u8*)(buffer + offset + 0) ) |
|
|
||||||
(*(u8*)(buffer + offset + 1) << 0x08) |
|
|
||||||
(*(u8*)(buffer + offset + 2) << 0x10) |
|
|
||||||
(*(u8*)(buffer + offset + 3) << 0x18);
|
|
||||||
}
|
|
||||||
|
|
||||||
u32 read_be_u32(const void *buffer, u32 offset) {
|
|
||||||
return (*(u8*)(buffer + offset + 3) ) |
|
|
||||||
(*(u8*)(buffer + offset + 2) << 0x08) |
|
|
||||||
(*(u8*)(buffer + offset + 1) << 0x10) |
|
|
||||||
(*(u8*)(buffer + offset + 0) << 0x18);
|
|
||||||
}
|
|
||||||
|
|
|
@ -96,7 +96,4 @@ void panic(u32 val);
|
||||||
void power_set_state(power_state_t state);
|
void power_set_state(power_state_t state);
|
||||||
void power_set_state_ex(void *param);
|
void power_set_state_ex(void *param);
|
||||||
|
|
||||||
u32 read_le_u32(const void *buffer, u32 offset);
|
|
||||||
u32 read_be_u32(const void *buffer, u32 offset);
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
/*
|
/*
|
||||||
* Copyright (c) 2022 shchmue
|
* Copyright (c) 2022 shchmue
|
||||||
|
* Copyright (c) 2018 Atmosphère-NX
|
||||||
*
|
*
|
||||||
* This program is free software; you can redistribute it and/or modify it
|
* This program is free software; you can redistribute it and/or modify it
|
||||||
* under the terms and conditions of the GNU General Public License,
|
* under the terms and conditions of the GNU General Public License,
|
||||||
|
@ -27,6 +28,15 @@
|
||||||
|
|
||||||
extern hekate_config h_cfg;
|
extern hekate_config h_cfg;
|
||||||
|
|
||||||
|
bool check_keyslot_access() {
|
||||||
|
u8 test_data[SE_KEY_128_SIZE] = {0};
|
||||||
|
const u8 test_ciphertext[SE_KEY_128_SIZE] = {0};
|
||||||
|
se_aes_key_set(KS_AES_ECB, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE);
|
||||||
|
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, test_data, test_ciphertext);
|
||||||
|
|
||||||
|
return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0;
|
||||||
|
}
|
||||||
|
|
||||||
bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) {
|
bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) {
|
||||||
u32 plaintext[SE_RSA2048_DIGEST_SIZE / 4] = {0},
|
u32 plaintext[SE_RSA2048_DIGEST_SIZE / 4] = {0},
|
||||||
ciphertext[SE_RSA2048_DIGEST_SIZE / 4] = {0},
|
ciphertext[SE_RSA2048_DIGEST_SIZE / 4] = {0},
|
||||||
|
@ -46,13 +56,82 @@ bool test_rsa_keypair(const void *public_exponent, const void *private_exponent,
|
||||||
bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair) {
|
bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair) {
|
||||||
// Unlike the SSL RSA key, we don't need to check the gmac - we can just verify the public exponent
|
// Unlike the SSL RSA key, we don't need to check the gmac - we can just verify the public exponent
|
||||||
// and test the keypair since we have the modulus
|
// and test the keypair since we have the modulus
|
||||||
if ((read_be_u32(keypair->public_exponent, 0) != RSA_PUBLIC_EXPONENT) ||
|
if ((byte_swap_32(keypair->public_exponent) != RSA_PUBLIC_EXPONENT) ||
|
||||||
(!test_rsa_keypair(keypair->public_exponent, keypair->private_exponent, keypair->modulus))) {
|
(!test_rsa_keypair(&keypair->public_exponent, keypair->private_exponent, keypair->modulus))
|
||||||
|
) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// _mgf1_xor() and rsa_oaep_decode were derived from Atmosphère
|
||||||
|
static void _mgf1_xor(void *masked, u32 masked_size, const void *seed, u32 seed_size)
|
||||||
|
{
|
||||||
|
u8 cur_hash[0x20] __attribute__((aligned(4)));
|
||||||
|
u8 hash_buf[0xe4] __attribute__((aligned(4)));
|
||||||
|
|
||||||
|
u32 hash_buf_size = seed_size + 4;
|
||||||
|
memcpy(hash_buf, seed, seed_size);
|
||||||
|
u32 round_num = 0;
|
||||||
|
|
||||||
|
u8 *p_out = (u8 *)masked;
|
||||||
|
|
||||||
|
while (masked_size) {
|
||||||
|
u32 cur_size = MIN(masked_size, 0x20);
|
||||||
|
|
||||||
|
for (u32 i = 0; i < 4; i++)
|
||||||
|
hash_buf[seed_size + 3 - i] = (round_num >> (8 * i)) & 0xff;
|
||||||
|
round_num++;
|
||||||
|
|
||||||
|
se_calc_sha256_oneshot(cur_hash, hash_buf, hash_buf_size);
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < cur_size; i++) {
|
||||||
|
*p_out ^= cur_hash[i];
|
||||||
|
p_out++;
|
||||||
|
}
|
||||||
|
|
||||||
|
masked_size -= cur_size;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
u32 rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size) {
|
||||||
|
if (dst_size <= 0 || buf_size < 0x43 || label_digest_size != 0x20)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
bool is_valid = buf[0] == 0;
|
||||||
|
|
||||||
|
u32 db_len = buf_size - 0x21;
|
||||||
|
u8 *seed = buf + 1;
|
||||||
|
u8 *db = seed + 0x20;
|
||||||
|
_mgf1_xor(seed, 0x20, db, db_len);
|
||||||
|
_mgf1_xor(db, db_len, seed, 0x20);
|
||||||
|
|
||||||
|
is_valid &= memcmp(label_digest, db, 0x20) ? 0 : 1;
|
||||||
|
|
||||||
|
db += 0x20;
|
||||||
|
db_len -= 0x20;
|
||||||
|
|
||||||
|
int msg_ofs = 0;
|
||||||
|
int looking_for_one = 1;
|
||||||
|
int invalid_db_padding = 0;
|
||||||
|
int is_zero;
|
||||||
|
int is_one;
|
||||||
|
for (int i = 0; i < db_len; ) {
|
||||||
|
is_zero = (db[i] == 0);
|
||||||
|
is_one = (db[i] == 1);
|
||||||
|
msg_ofs += (looking_for_one & is_one) * (++i);
|
||||||
|
looking_for_one &= ~is_one;
|
||||||
|
invalid_db_padding |= (looking_for_one & ~is_zero);
|
||||||
|
}
|
||||||
|
|
||||||
|
is_valid &= (invalid_db_padding == 0);
|
||||||
|
|
||||||
|
const u32 msg_size = MIN(dst_size, is_valid * (db_len - msg_ofs));
|
||||||
|
memcpy(dst, db + msg_ofs, msg_size);
|
||||||
|
|
||||||
|
return msg_size;
|
||||||
|
}
|
||||||
|
|
||||||
// Equivalent to spl::GenerateAesKek
|
// Equivalent to spl::GenerateAesKek
|
||||||
void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) {
|
void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) {
|
||||||
bool device_unique = GET_IS_DEVICE_UNIQUE(option);
|
bool device_unique = GET_IS_DEVICE_UNIQUE(option);
|
||||||
|
|
|
@ -127,10 +127,12 @@ static const u8 secure_data_tweaks[1][0x10] __attribute__((aligned(4))) = {
|
||||||
#define SSL_RSA_KEY_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE)
|
#define SSL_RSA_KEY_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE)
|
||||||
#define ETICKET_RSA_KEYPAIR_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE * 2 + SE_KEY_128_SIZE)
|
#define ETICKET_RSA_KEYPAIR_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE * 2 + SE_KEY_128_SIZE)
|
||||||
|
|
||||||
|
#define TICKET_SIG_TYPE_RSA2048_SHA256 0x10004
|
||||||
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
u8 private_exponent[SE_RSA2048_DIGEST_SIZE];
|
u8 private_exponent[SE_RSA2048_DIGEST_SIZE];
|
||||||
u8 modulus[SE_RSA2048_DIGEST_SIZE];
|
u8 modulus[SE_RSA2048_DIGEST_SIZE];
|
||||||
u8 public_exponent[4];
|
u32 public_exponent;
|
||||||
u8 reserved[0xC];
|
u8 reserved[0xC];
|
||||||
} rsa_keypair_t;
|
} rsa_keypair_t;
|
||||||
|
|
||||||
|
@ -199,8 +201,11 @@ typedef enum {
|
||||||
#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7)
|
#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7)
|
||||||
#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1)
|
#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1)
|
||||||
|
|
||||||
|
bool check_keyslot_access();
|
||||||
|
|
||||||
bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus);
|
bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus);
|
||||||
bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair);
|
bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair);
|
||||||
|
u32 rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size);
|
||||||
|
|
||||||
// Equivalent to spl::GenerateAesKek
|
// Equivalent to spl::GenerateAesKek
|
||||||
void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option);
|
void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option);
|
||||||
|
|
|
@ -65,6 +65,7 @@ static void _save_key(const char *name, const void *data, u32 len, char *outbuf)
|
||||||
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
|
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
|
||||||
|
|
||||||
static void _derive_master_key_mariko(key_storage_t *keys, bool is_dev) {
|
static void _derive_master_key_mariko(key_storage_t *keys, bool is_dev) {
|
||||||
|
minerva_periodic_training();
|
||||||
// Relies on the SBK being properly set in slot 14
|
// Relies on the SBK being properly set in slot 14
|
||||||
se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
|
se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
|
||||||
// Derive all master keys based on Mariko KEK
|
// Derive all master keys based on Mariko KEK
|
||||||
|
@ -94,6 +95,7 @@ static int _run_ams_keygen(key_storage_t *keys) {
|
||||||
}
|
}
|
||||||
|
|
||||||
static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev) {
|
static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev) {
|
||||||
|
minerva_periodic_training();
|
||||||
if (!h_cfg.t210b01) {
|
if (!h_cfg.t210b01) {
|
||||||
u32 tsec_root_key_slot = is_dev ? 11 : 13;
|
u32 tsec_root_key_slot = is_dev ? 11 : 13;
|
||||||
// Derive all master keys based on current root key
|
// Derive all master keys based on current root key
|
||||||
|
@ -103,6 +105,8 @@ static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
minerva_periodic_training();
|
||||||
|
|
||||||
// Derive all lower master keys
|
// Derive all lower master keys
|
||||||
for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) {
|
for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) {
|
||||||
load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
|
load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
|
||||||
|
@ -116,6 +120,8 @@ static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev
|
||||||
}
|
}
|
||||||
|
|
||||||
static void _derive_keyblob_keys(key_storage_t *keys) {
|
static void _derive_keyblob_keys(key_storage_t *keys) {
|
||||||
|
minerva_periodic_training();
|
||||||
|
|
||||||
u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE);
|
u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE);
|
||||||
u32 keyblob_mac[SE_KEY_128_SIZE / 4] = {0};
|
u32 keyblob_mac[SE_KEY_128_SIZE / 4] = {0};
|
||||||
bool have_keyblobs = true;
|
bool have_keyblobs = true;
|
||||||
|
@ -194,6 +200,7 @@ static void _derive_bis_keys(key_storage_t *keys) {
|
||||||
}
|
}
|
||||||
|
|
||||||
static void _derive_non_unique_keys(key_storage_t *keys, bool is_dev) {
|
static void _derive_non_unique_keys(key_storage_t *keys, bool is_dev) {
|
||||||
|
minerva_periodic_training();
|
||||||
if (_key_exists(keys->master_key[0])) {
|
if (_key_exists(keys->master_key[0])) {
|
||||||
const u32 generation = 0;
|
const u32 generation = 0;
|
||||||
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
|
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
|
||||||
|
@ -209,6 +216,7 @@ static void _derive_rsa_kek(u32 ks, key_storage_t *keys, void *out_rsa_kek, cons
|
||||||
}
|
}
|
||||||
|
|
||||||
static void _derive_misc_keys(key_storage_t *keys, bool is_dev) {
|
static void _derive_misc_keys(key_storage_t *keys, bool is_dev) {
|
||||||
|
minerva_periodic_training();
|
||||||
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
|
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
|
||||||
void *access_key = keys->temp_key;
|
void *access_key = keys->temp_key;
|
||||||
const u32 generation = 0;
|
const u32 generation = 0;
|
||||||
|
@ -231,6 +239,7 @@ static void _derive_misc_keys(key_storage_t *keys, bool is_dev) {
|
||||||
|
|
||||||
static void _derive_per_generation_keys(key_storage_t *keys) {
|
static void _derive_per_generation_keys(key_storage_t *keys) {
|
||||||
for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) {
|
for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) {
|
||||||
|
minerva_periodic_training();
|
||||||
if (!_key_exists(keys->master_key[generation]))
|
if (!_key_exists(keys->master_key[generation]))
|
||||||
continue;
|
continue;
|
||||||
for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) {
|
for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) {
|
||||||
|
@ -244,6 +253,45 @@ static void _derive_per_generation_keys(key_storage_t *keys) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Returns true when terminator is found
|
||||||
|
static bool _count_ticket_records(u32 buf_size, titlekey_buffer_t *titlekey_buffer, u32 *tkey_count) {
|
||||||
|
ticket_record_t *curr_ticket_record = (ticket_record_t *)titlekey_buffer->read_buffer;
|
||||||
|
for (u32 i = 0; i < buf_size; i += sizeof(ticket_record_t), curr_ticket_record++) {
|
||||||
|
if (curr_ticket_record->rights_id[0] == 0xFF)
|
||||||
|
return true;
|
||||||
|
(*tkey_count)++;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void _decode_tickets(u32 buf_size, titlekey_buffer_t *titlekey_buffer, u32 remaining, u32 total, u32 x, u32 y, u32 *pct, u32 *last_pct, bool is_personalized) {
|
||||||
|
ticket_t *curr_ticket = (ticket_t *)titlekey_buffer->read_buffer;
|
||||||
|
for (u32 i = 0; i < MIN(buf_size / sizeof(ticket_t), remaining) * sizeof(ticket_t) && curr_ticket->signature_type != 0; i += sizeof(ticket_t), curr_ticket++) {
|
||||||
|
minerva_periodic_training();
|
||||||
|
*pct = (total - remaining) * 100 / total;
|
||||||
|
if (*pct > *last_pct && *pct <= 100) {
|
||||||
|
*last_pct = *pct;
|
||||||
|
tui_pbar(x, y, *pct, COLOR_GREEN, 0xFF155500);
|
||||||
|
}
|
||||||
|
|
||||||
|
// This is in case an encrypted volatile ticket is left behind
|
||||||
|
if (curr_ticket->signature_type != TICKET_SIG_TYPE_RSA2048_SHA256)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
u8 *curr_titlekey = curr_ticket->titlekey_block;
|
||||||
|
const u32 block_size = SE_RSA2048_DIGEST_SIZE;
|
||||||
|
const u32 titlekey_size = sizeof(titlekey_buffer->titlekeys[0]);
|
||||||
|
if (is_personalized) {
|
||||||
|
se_rsa_exp_mod(0, curr_titlekey, block_size, curr_titlekey, block_size);
|
||||||
|
if (rsa_oaep_decode(curr_titlekey, titlekey_size, null_hash, sizeof(null_hash), curr_titlekey, block_size) != titlekey_size)
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
memcpy(titlekey_buffer->rights_ids[_titlekey_count], curr_ticket->rights_id, sizeof(titlekey_buffer->rights_ids[0]));
|
||||||
|
memcpy(titlekey_buffer->titlekeys[_titlekey_count], curr_titlekey, titlekey_size);
|
||||||
|
_titlekey_count++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) {
|
static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) {
|
||||||
FIL fp;
|
FIL fp;
|
||||||
u64 br = buf_size;
|
u64 br = buf_size;
|
||||||
|
@ -251,8 +299,10 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
|
||||||
u32 file_tkey_count = 0;
|
u32 file_tkey_count = 0;
|
||||||
u32 save_x = gfx_con.x, save_y = gfx_con.y;
|
u32 save_x = gfx_con.x, save_y = gfx_con.y;
|
||||||
bool is_personalized = rsa_keypair != NULL;
|
bool is_personalized = rsa_keypair != NULL;
|
||||||
u32 start_titlekey_count = _titlekey_count;
|
const char ticket_bin_path[32] = "/ticket.bin";
|
||||||
|
const char ticket_list_bin_path[32] = "/ticket_list.bin";
|
||||||
char titlekey_save_path[32] = "bis:/save/80000000000000E1";
|
char titlekey_save_path[32] = "bis:/save/80000000000000E1";
|
||||||
|
save_data_file_ctx_t ticket_file;
|
||||||
|
|
||||||
if (is_personalized) {
|
if (is_personalized) {
|
||||||
titlekey_save_path[25] = '2';
|
titlekey_save_path[25] = '2';
|
||||||
|
@ -280,10 +330,6 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
const char ticket_bin_path[32] = "/ticket.bin";
|
|
||||||
const char ticket_list_bin_path[32] = "/ticket_list.bin";
|
|
||||||
save_data_file_ctx_t ticket_file;
|
|
||||||
|
|
||||||
if (!save_open_file(save_ctx, &ticket_file, ticket_list_bin_path, OPEN_MODE_READ)) {
|
if (!save_open_file(save_ctx, &ticket_file, ticket_list_bin_path, OPEN_MODE_READ)) {
|
||||||
EPRINTF("Unable to locate ticket_list.bin in save.");
|
EPRINTF("Unable to locate ticket_list.bin in save.");
|
||||||
f_close(&fp);
|
f_close(&fp);
|
||||||
|
@ -292,22 +338,19 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool terminator_reached = false;
|
// Read ticket list to get ticket count
|
||||||
while (offset < ticket_file.size && !terminator_reached) {
|
while (offset < ticket_file.size) {
|
||||||
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
|
|
||||||
break;
|
|
||||||
offset += br;
|
|
||||||
minerva_periodic_training();
|
minerva_periodic_training();
|
||||||
ticket_record_t *curr_ticket_record = (ticket_record_t *)titlekey_buffer->read_buffer;
|
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) ||
|
||||||
for (u32 i = 0; i < buf_size; i += sizeof(ticket_record_t), curr_ticket_record++) {
|
titlekey_buffer->read_buffer[0] == 0 ||
|
||||||
if (curr_ticket_record->rights_id[0] == 0xFF) {
|
br != buf_size ||
|
||||||
terminator_reached = true;
|
_count_ticket_records(buf_size, titlekey_buffer, &file_tkey_count)
|
||||||
break;
|
) {
|
||||||
}
|
break;
|
||||||
file_tkey_count++;
|
|
||||||
}
|
}
|
||||||
|
offset += br;
|
||||||
}
|
}
|
||||||
TPRINTF(" Count keys...");
|
TPRINTF(" Count titlekeys...");
|
||||||
|
|
||||||
if (!save_open_file(save_ctx, &ticket_file, ticket_bin_path, OPEN_MODE_READ)) {
|
if (!save_open_file(save_ctx, &ticket_file, ticket_bin_path, OPEN_MODE_READ)) {
|
||||||
EPRINTF("Unable to locate ticket.bin in save.");
|
EPRINTF("Unable to locate ticket.bin in save.");
|
||||||
|
@ -317,50 +360,17 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (is_personalized) {
|
if (is_personalized)
|
||||||
se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent));
|
se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent));
|
||||||
}
|
|
||||||
|
|
||||||
const u32 ticket_sig_type_rsa2048_sha256 = 0x10004;
|
|
||||||
|
|
||||||
offset = 0;
|
offset = 0;
|
||||||
terminator_reached = false;
|
u32 pct = 0, last_pct = 0, remaining = file_tkey_count;
|
||||||
u32 pct = 0, last_pct = 0, i = 0;
|
while (offset < ticket_file.size && remaining) {
|
||||||
while (offset < ticket_file.size && !terminator_reached) {
|
|
||||||
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
|
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
|
||||||
break;
|
break;
|
||||||
offset += br;
|
offset += br;
|
||||||
ticket_t *curr_ticket = (ticket_t *)titlekey_buffer->read_buffer;
|
_decode_tickets(buf_size, titlekey_buffer, remaining, file_tkey_count, save_x, save_y, &pct, &last_pct, is_personalized);
|
||||||
for (u32 j = 0; j < buf_size; j += sizeof(ticket_t), curr_ticket++) {
|
remaining -= MIN(buf_size / sizeof(ticket_t), remaining);
|
||||||
minerva_periodic_training();
|
|
||||||
pct = (_titlekey_count - start_titlekey_count) * 100 / file_tkey_count;
|
|
||||||
if (pct > last_pct && pct <= 100) {
|
|
||||||
last_pct = pct;
|
|
||||||
tui_pbar(save_x, save_y, pct, COLOR_GREEN, 0xFF155500);
|
|
||||||
}
|
|
||||||
if (i == file_tkey_count || curr_ticket->signature_type == 0) {
|
|
||||||
terminator_reached = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (curr_ticket->signature_type != ticket_sig_type_rsa2048_sha256) {
|
|
||||||
i++;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (is_personalized) {
|
|
||||||
se_rsa_exp_mod(0, curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block), curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block));
|
|
||||||
if (se_rsa_oaep_decode(
|
|
||||||
curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]),
|
|
||||||
null_hash, sizeof(null_hash),
|
|
||||||
curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block)
|
|
||||||
) != sizeof(titlekey_buffer->titlekeys[0])
|
|
||||||
)
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
memcpy(titlekey_buffer->rights_ids[_titlekey_count], curr_ticket->rights_id, sizeof(titlekey_buffer->rights_ids[0]));
|
|
||||||
memcpy(titlekey_buffer->titlekeys[_titlekey_count], curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]));
|
|
||||||
_titlekey_count++;
|
|
||||||
i++;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
tui_pbar(save_x, save_y, 100, COLOR_GREEN, 0xFF155500);
|
tui_pbar(save_x, save_y, 100, COLOR_GREEN, 0xFF155500);
|
||||||
f_close(&fp);
|
f_close(&fp);
|
||||||
|
@ -844,21 +854,11 @@ static void _save_keys_to_sd(key_storage_t *keys, titlekey_buffer_t *titlekey_bu
|
||||||
free(text_buffer);
|
free(text_buffer);
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool _check_keyslot_access() {
|
|
||||||
u8 test_data[SE_KEY_128_SIZE] = {0};
|
|
||||||
const u8 test_ciphertext[SE_KEY_128_SIZE] = {0};
|
|
||||||
se_aes_key_set(KS_AES_ECB, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE);
|
|
||||||
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, test_data, test_ciphertext);
|
|
||||||
|
|
||||||
return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_keys, bool is_dev) {
|
static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_keys, bool is_dev) {
|
||||||
key_storage_t *keys = is_dev ? dev_keys : prod_keys;
|
key_storage_t *keys = is_dev ? dev_keys : prod_keys;
|
||||||
|
|
||||||
if (h_cfg.t210b01) {
|
if (h_cfg.t210b01) {
|
||||||
_derive_master_key_mariko(keys, is_dev);
|
_derive_master_key_mariko(keys, is_dev);
|
||||||
minerva_periodic_training();
|
|
||||||
_derive_master_keys_from_latest_key(keys, is_dev);
|
_derive_master_keys_from_latest_key(keys, is_dev);
|
||||||
} else {
|
} else {
|
||||||
int res = _run_ams_keygen(keys);
|
int res = _run_ams_keygen(keys);
|
||||||
|
@ -874,9 +874,7 @@ static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_key
|
||||||
free(aes_keys);
|
free(aes_keys);
|
||||||
|
|
||||||
_derive_master_keys_from_latest_key(prod_keys, false);
|
_derive_master_keys_from_latest_key(prod_keys, false);
|
||||||
minerva_periodic_training();
|
|
||||||
_derive_master_keys_from_latest_key(dev_keys, true);
|
_derive_master_keys_from_latest_key(dev_keys, true);
|
||||||
minerva_periodic_training();
|
|
||||||
_derive_keyblob_keys(keys);
|
_derive_keyblob_keys(keys);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -884,7 +882,7 @@ static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_key
|
||||||
static void _derive_keys() {
|
static void _derive_keys() {
|
||||||
minerva_periodic_training();
|
minerva_periodic_training();
|
||||||
|
|
||||||
if (!_check_keyslot_access()) {
|
if (!check_keyslot_access()) {
|
||||||
EPRINTF("Unable to set crypto keyslots!\nTry launching payload differently\n or flash Spacecraft-NX if using a modchip.");
|
EPRINTF("Unable to set crypto keyslots!\nTry launching payload differently\n or flash Spacecraft-NX if using a modchip.");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
@ -917,19 +915,10 @@ static void _derive_keys() {
|
||||||
|
|
||||||
TPRINTFARGS("%kBIS keys... ", colors[(color_idx++) % 6]);
|
TPRINTFARGS("%kBIS keys... ", colors[(color_idx++) % 6]);
|
||||||
|
|
||||||
minerva_periodic_training();
|
|
||||||
_derive_misc_keys(keys, is_dev);
|
_derive_misc_keys(keys, is_dev);
|
||||||
|
|
||||||
minerva_periodic_training();
|
|
||||||
_derive_non_unique_keys(&prod_keys, is_dev);
|
_derive_non_unique_keys(&prod_keys, is_dev);
|
||||||
|
|
||||||
minerva_periodic_training();
|
|
||||||
_derive_non_unique_keys(&dev_keys, is_dev);
|
_derive_non_unique_keys(&dev_keys, is_dev);
|
||||||
|
|
||||||
minerva_periodic_training();
|
|
||||||
_derive_per_generation_keys(&prod_keys);
|
_derive_per_generation_keys(&prod_keys);
|
||||||
|
|
||||||
minerva_periodic_training();
|
|
||||||
_derive_per_generation_keys(&dev_keys);
|
_derive_per_generation_keys(&dev_keys);
|
||||||
|
|
||||||
titlekey_buffer_t *titlekey_buffer = (titlekey_buffer_t *)TITLEKEY_BUF_ADR;
|
titlekey_buffer_t *titlekey_buffer = (titlekey_buffer_t *)TITLEKEY_BUF_ADR;
|
||||||
|
@ -957,6 +946,37 @@ static void _derive_keys() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void _decrypt_amiibo_keys(key_storage_t *keys, const u8 *encrypted_keys, nfc_save_key_t nfc_save_keys[2]) {
|
||||||
|
u32 kek[SE_KEY_128_SIZE / 4] = {0};
|
||||||
|
decrypt_aes_key(KS_AES_ECB, keys, kek, nfc_key_source, 0, 0);
|
||||||
|
|
||||||
|
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
|
||||||
|
static const u8 nfc_iv[SE_KEY_128_SIZE] = {
|
||||||
|
0xB9, 0x1D, 0xC1, 0xCF, 0x33, 0x5F, 0xA6, 0x13, 0x2A, 0xEF, 0x90, 0x99, 0xAA, 0xCA, 0x93, 0xC8};
|
||||||
|
se_aes_key_set(KS_AES_CTR, kek, SE_KEY_128_SIZE);
|
||||||
|
se_aes_crypt_ctr(KS_AES_CTR, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv);
|
||||||
|
|
||||||
|
minerva_periodic_training();
|
||||||
|
|
||||||
|
u32 xor_pad[0x20 / 4] = {0};
|
||||||
|
se_aes_key_set(KS_AES_CTR, nfc_keyblob.ctr_key, SE_KEY_128_SIZE);
|
||||||
|
se_aes_crypt_ctr(KS_AES_CTR, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv);
|
||||||
|
|
||||||
|
minerva_periodic_training();
|
||||||
|
|
||||||
|
memcpy(nfc_save_keys[0].hmac_key, nfc_keyblob.hmac_key, sizeof(nfc_keyblob.hmac_key));
|
||||||
|
memcpy(nfc_save_keys[0].phrase, nfc_keyblob.phrase, sizeof(nfc_keyblob.phrase));
|
||||||
|
nfc_save_keys[0].seed_size = sizeof(nfc_keyblob.seed);
|
||||||
|
memcpy(nfc_save_keys[0].seed, nfc_keyblob.seed, sizeof(nfc_keyblob.seed));
|
||||||
|
memcpy(nfc_save_keys[0].xor_pad, xor_pad, sizeof(xor_pad));
|
||||||
|
|
||||||
|
memcpy(nfc_save_keys[1].hmac_key, nfc_keyblob.hmac_key_for_verif, sizeof(nfc_keyblob.hmac_key_for_verif));
|
||||||
|
memcpy(nfc_save_keys[1].phrase, nfc_keyblob.phrase_for_verif, sizeof(nfc_keyblob.phrase_for_verif));
|
||||||
|
nfc_save_keys[1].seed_size = sizeof(nfc_keyblob.seed_for_verif);
|
||||||
|
memcpy(nfc_save_keys[1].seed, nfc_keyblob.seed_for_verif, sizeof(nfc_keyblob.seed_for_verif));
|
||||||
|
memcpy(nfc_save_keys[1].xor_pad, xor_pad, sizeof(xor_pad));
|
||||||
|
}
|
||||||
|
|
||||||
void derive_amiibo_keys() {
|
void derive_amiibo_keys() {
|
||||||
minerva_change_freq(FREQ_1600);
|
minerva_change_freq(FREQ_1600);
|
||||||
|
|
||||||
|
@ -985,53 +1005,25 @@ void derive_amiibo_keys() {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
decrypt_aes_key(KS_AES_ECB, keys, keys->temp_key, nfc_key_source, 0, 0);
|
|
||||||
|
|
||||||
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
|
|
||||||
static const u8 nfc_iv[SE_KEY_128_SIZE] = {
|
|
||||||
0xB9, 0x1D, 0xC1, 0xCF, 0x33, 0x5F, 0xA6, 0x13, 0x2A, 0xEF, 0x90, 0x99, 0xAA, 0xCA, 0x93, 0xC8};
|
|
||||||
se_aes_key_set(KS_AES_CTR, keys->temp_key, SE_KEY_128_SIZE);
|
|
||||||
se_aes_crypt_ctr(KS_AES_CTR, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv);
|
|
||||||
|
|
||||||
minerva_periodic_training();
|
|
||||||
|
|
||||||
u8 xor_pad[0x20] __attribute__((aligned(4))) = {0};
|
|
||||||
se_aes_key_set(KS_AES_CTR, nfc_keyblob.ctr_key, SE_KEY_128_SIZE);
|
|
||||||
se_aes_crypt_ctr(KS_AES_CTR, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv);
|
|
||||||
|
|
||||||
minerva_periodic_training();
|
|
||||||
|
|
||||||
nfc_save_key_t __attribute__((aligned(4))) nfc_save_keys[2] = {0};
|
nfc_save_key_t __attribute__((aligned(4))) nfc_save_keys[2] = {0};
|
||||||
memcpy(nfc_save_keys[0].hmac_key, nfc_keyblob.hmac_key, sizeof(nfc_keyblob.hmac_key));
|
|
||||||
memcpy(nfc_save_keys[0].phrase, nfc_keyblob.phrase, sizeof(nfc_keyblob.phrase));
|
|
||||||
nfc_save_keys[0].seed_size = sizeof(nfc_keyblob.seed);
|
|
||||||
memcpy(nfc_save_keys[0].seed, nfc_keyblob.seed, sizeof(nfc_keyblob.seed));
|
|
||||||
memcpy(nfc_save_keys[0].xor_pad, xor_pad, sizeof(xor_pad));
|
|
||||||
|
|
||||||
memcpy(nfc_save_keys[1].hmac_key, nfc_keyblob.hmac_key_for_verif, sizeof(nfc_keyblob.hmac_key_for_verif));
|
_decrypt_amiibo_keys(keys, encrypted_keys, nfc_save_keys);
|
||||||
memcpy(nfc_save_keys[1].phrase, nfc_keyblob.phrase_for_verif, sizeof(nfc_keyblob.phrase_for_verif));
|
|
||||||
nfc_save_keys[1].seed_size = sizeof(nfc_keyblob.seed_for_verif);
|
|
||||||
memcpy(nfc_save_keys[1].seed, nfc_keyblob.seed_for_verif, sizeof(nfc_keyblob.seed_for_verif));
|
|
||||||
memcpy(nfc_save_keys[1].xor_pad, xor_pad, sizeof(xor_pad));
|
|
||||||
|
|
||||||
minerva_periodic_training();
|
minerva_periodic_training();
|
||||||
|
|
||||||
u8 hash[0x20] = {0};
|
u32 hash[SE_SHA_256_SIZE / 4] = {0};
|
||||||
se_calc_sha256_oneshot(hash, &nfc_save_keys[0], sizeof(nfc_save_keys));
|
se_calc_sha256_oneshot(hash, &nfc_save_keys[0], sizeof(nfc_save_keys));
|
||||||
|
|
||||||
if (memcmp(hash, is_dev ? nfc_blob_hash_dev : nfc_blob_hash, sizeof(hash)) != 0) {
|
if (memcmp(hash, is_dev ? nfc_blob_hash_dev : nfc_blob_hash, sizeof(hash)) != 0) {
|
||||||
EPRINTF("Amiibo hash mismatch. Skipping save.");
|
EPRINTF("Amiibo hash mismatch. Skipping save.");
|
||||||
minerva_change_freq(FREQ_800);
|
|
||||||
btn_wait();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const char *keyfile_path = is_dev ? "sd:/switch/key_dev.bin" : "sd:/switch/key_retail.bin";
|
|
||||||
|
|
||||||
if (!sd_save_to_file(&nfc_save_keys[0], sizeof(nfc_save_keys), keyfile_path)) {
|
|
||||||
gfx_printf("%kWrote Amiibo keys to\n %s\n", colors[(color_idx++) % 6], keyfile_path);
|
|
||||||
} else {
|
} else {
|
||||||
EPRINTF("Unable to save Amiibo keys to SD.");
|
const char *keyfile_path = is_dev ? "sd:/switch/key_dev.bin" : "sd:/switch/key_retail.bin";
|
||||||
|
|
||||||
|
if (!sd_save_to_file(&nfc_save_keys[0], sizeof(nfc_save_keys), keyfile_path)) {
|
||||||
|
gfx_printf("%kWrote Amiibo keys to\n %s\n", colors[(color_idx++) % 6], keyfile_path);
|
||||||
|
} else {
|
||||||
|
EPRINTF("Unable to save Amiibo keys to SD.");
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]);
|
gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]);
|
||||||
|
|
|
@ -25,7 +25,7 @@
|
||||||
|
|
||||||
// only tickets of type Rsa2048Sha256 are expected
|
// only tickets of type Rsa2048Sha256 are expected
|
||||||
typedef struct {
|
typedef struct {
|
||||||
u32 signature_type; // always 0x10004
|
u32 signature_type; // always 0x10004
|
||||||
u8 signature[SE_RSA2048_DIGEST_SIZE];
|
u8 signature[SE_RSA2048_DIGEST_SIZE];
|
||||||
u8 sig_padding[0x3C];
|
u8 sig_padding[0x3C];
|
||||||
char issuer[0x40];
|
char issuer[0x40];
|
||||||
|
|
Loading…
Reference in a new issue