mirror of
https://github.com/shchmue/Lockpick_RCM.git
synced 2025-01-18 14:57:20 +00:00
236 lines
7.3 KiB
C
236 lines
7.3 KiB
C
/*
|
|
* Copyright (c) 2019 shchmue
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
/* Low level disk I/O module skeleton for FatFs (C)ChaN, 2016 */
|
|
/*-----------------------------------------------------------------------*/
|
|
/* If a working storage control module is available, it should be */
|
|
/* attached to the FatFs via a glue function rather than modifying it. */
|
|
/* This is an example of glue functions to attach various exsisting */
|
|
/* storage control modules to the FatFs module with a defined API. */
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
#include <string.h>
|
|
#include "diskio.h" /* FatFs lower layer API */
|
|
#include "../../mem/heap.h"
|
|
#include "../../sec/se.h"
|
|
#include "../../storage/nx_emmc.h"
|
|
#include "../../storage/sdmmc.h"
|
|
|
|
#define SDMMC_UPPER_BUFFER 0xB8000000
|
|
#define DRAM_START 0x80000000
|
|
|
|
extern sdmmc_storage_t sd_storage;
|
|
extern sdmmc_storage_t storage;
|
|
extern emmc_part_t *system_part;
|
|
|
|
typedef struct {
|
|
u32 sector;
|
|
u32 visit_count;
|
|
u8 tweak[0x10];
|
|
u8 cached_sector[0x200];
|
|
u8 align[8];
|
|
} sector_cache_t;
|
|
|
|
#define MAX_SEC_CACHE_ENTRIES 64
|
|
static sector_cache_t *sector_cache = NULL;
|
|
static u32 secindex = 0;
|
|
bool clear_sector_cache = false;
|
|
|
|
DSTATUS disk_status (
|
|
BYTE pdrv /* Physical drive number to identify the drive */
|
|
)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
DSTATUS disk_initialize (
|
|
BYTE pdrv /* Physical drive number to identify the drive */
|
|
)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void _gf256_mul_x_le(void *block) {
|
|
u8 *pdata = (u8 *)block;
|
|
u32 carry = 0;
|
|
|
|
for (u32 i = 0; i < 0x10; i++) {
|
|
u8 b = pdata[i];
|
|
pdata[i] = (b << 1) | carry;
|
|
carry = b >> 7;
|
|
}
|
|
|
|
if (carry)
|
|
pdata[0x0] ^= 0x87;
|
|
}
|
|
|
|
static inline int _emmc_xts(u32 ks1, u32 ks2, u32 enc, u8 *tweak, bool regen_tweak, u32 tweak_exp, u64 sec, void *dst, void *src, u32 secsize) {
|
|
int res = 0;
|
|
u8 *pdst = (u8 *)dst;
|
|
u8 *psrc = (u8 *)src;
|
|
|
|
if (regen_tweak) {
|
|
for (int i = 0xF; i >= 0; i--) {
|
|
tweak[i] = sec & 0xFF;
|
|
sec >>= 8;
|
|
}
|
|
if (!se_aes_crypt_block_ecb(ks1, 1, tweak, tweak))
|
|
goto out;
|
|
}
|
|
|
|
for (u32 i = 0; i < tweak_exp * 0x20; i++)
|
|
_gf256_mul_x_le(tweak);
|
|
|
|
u8 temptweak[0x10];
|
|
memcpy(temptweak, tweak, 0x10);
|
|
|
|
//We are assuming a 0x10-aligned sector size in this implementation.
|
|
for (u32 i = 0; i < secsize / 0x10; i++) {
|
|
for (u32 j = 0; j < 0x10; j++)
|
|
pdst[j] = psrc[j] ^ tweak[j];
|
|
_gf256_mul_x_le(tweak);
|
|
psrc += 0x10;
|
|
pdst += 0x10;
|
|
}
|
|
|
|
se_aes_crypt_ecb(ks2, 0, dst, secsize, src, secsize);
|
|
|
|
pdst = (u8 *)dst;
|
|
|
|
memcpy(tweak, temptweak, 0x10);
|
|
for (u32 i = 0; i < secsize / 0x10; i++) {
|
|
for (u32 j = 0; j < 0x10; j++)
|
|
pdst[j] = pdst[j] ^ tweak[j];
|
|
_gf256_mul_x_le(tweak);
|
|
pdst += 0x10;
|
|
}
|
|
|
|
|
|
res = 1;
|
|
|
|
out:;
|
|
return res;
|
|
}
|
|
|
|
DRESULT disk_read (
|
|
BYTE pdrv, /* Physical drive number to identify the drive */
|
|
BYTE *buff, /* Data buffer to store read data */
|
|
DWORD sector, /* Start sector in LBA */
|
|
UINT count /* Number of sectors to read */
|
|
)
|
|
{
|
|
switch (pdrv)
|
|
{
|
|
case 0:
|
|
if (((u32)buff >= DRAM_START) && !((u32)buff % 8))
|
|
return sdmmc_storage_read(&sd_storage, sector, count, buff) ? RES_OK : RES_ERROR;
|
|
u8 *buf = (u8 *)SDMMC_UPPER_BUFFER;
|
|
if (sdmmc_storage_read(&sd_storage, sector, count, buf))
|
|
{
|
|
memcpy(buff, buf, 512 * count);
|
|
return RES_OK;
|
|
}
|
|
return RES_ERROR;
|
|
|
|
case 1:;
|
|
__attribute__ ((aligned (16))) static u8 tweak[0x10];
|
|
__attribute__ ((aligned (16))) static u64 prev_cluster = -1;
|
|
__attribute__ ((aligned (16))) static u32 prev_sector = 0;
|
|
u32 tweak_exp = 0;
|
|
bool regen_tweak = true, cache_sector = false;
|
|
|
|
if (secindex == 0 || clear_sector_cache) {
|
|
free(sector_cache);
|
|
sector_cache = (sector_cache_t *)malloc(sizeof(sector_cache_t) * MAX_SEC_CACHE_ENTRIES);
|
|
clear_sector_cache = false;
|
|
secindex = 0;
|
|
}
|
|
|
|
u32 s = 0;
|
|
if (count == 1) {
|
|
for ( ; s < secindex; s++) {
|
|
if (sector_cache[s].sector == sector) {
|
|
sector_cache[s].visit_count++;
|
|
memcpy(buff, sector_cache[s].cached_sector, 0x200);
|
|
memcpy(tweak, sector_cache[s].tweak, 0x10);
|
|
prev_sector = sector;
|
|
prev_cluster = sector / 0x20;
|
|
return RES_OK;
|
|
}
|
|
}
|
|
// add to cache
|
|
if (s == secindex && s < MAX_SEC_CACHE_ENTRIES) {
|
|
sector_cache[s].sector = sector;
|
|
sector_cache[s].visit_count++;
|
|
cache_sector = true;
|
|
secindex++;
|
|
}
|
|
}
|
|
|
|
if (nx_emmc_part_read(&storage, system_part, sector, count, buff)) {
|
|
if (prev_cluster != sector / 0x20) { // sector in different cluster than last read
|
|
prev_cluster = sector / 0x20;
|
|
tweak_exp = sector % 0x20;
|
|
} else if (sector > prev_sector) { // sector in same cluster and past last sector
|
|
tweak_exp = sector - prev_sector - 1;
|
|
regen_tweak = false;
|
|
} else { // sector in same cluster and before or same as last sector
|
|
tweak_exp = sector % 0x20;
|
|
}
|
|
|
|
// fatfs will never pull more than a cluster
|
|
_emmc_xts(9, 8, 0, tweak, regen_tweak, tweak_exp, prev_cluster, buff, buff, count * 0x200);
|
|
if (cache_sector) {
|
|
memcpy(sector_cache[s].cached_sector, buff, 0x200);
|
|
memcpy(sector_cache[s].tweak, tweak, 0x10);
|
|
}
|
|
prev_sector = sector + count - 1;
|
|
return RES_OK;
|
|
}
|
|
return RES_ERROR;
|
|
}
|
|
return RES_ERROR;
|
|
}
|
|
|
|
DRESULT disk_write (
|
|
BYTE pdrv, /* Physical drive number to identify the drive */
|
|
const BYTE *buff, /* Data to be written */
|
|
DWORD sector, /* Start sector in LBA */
|
|
UINT count /* Number of sectors to write */
|
|
)
|
|
{
|
|
if (pdrv == 1)
|
|
return RES_WRPRT;
|
|
|
|
if (((u32)buff >= DRAM_START) && !((u32)buff % 8))
|
|
return sdmmc_storage_write(&sd_storage, sector, count, (void *)buff) ? RES_OK : RES_ERROR;
|
|
u8 *buf = (u8 *)SDMMC_UPPER_BUFFER; //TODO: define this somewhere.
|
|
memcpy(buf, buff, 512 * count);
|
|
if (sdmmc_storage_write(&sd_storage, sector, count, buf))
|
|
return RES_OK;
|
|
return RES_ERROR;
|
|
}
|
|
|
|
DRESULT disk_ioctl (
|
|
BYTE pdrv, /* Physical drive number (0..) */
|
|
BYTE cmd, /* Control code */
|
|
void *buff /* Buffer to send/receive control data */
|
|
)
|
|
{
|
|
return RES_OK;
|
|
}
|