nstool/programs/xcitool/source/main.cpp

282 lines
8.8 KiB
C++

#include <cstdio>
#include <vector>
#include <string>
#include <crypto/aes.h>
#include <crypto/rsa.h>
#include <fnd/io.h>
#include <fnd/MemoryBlob.h>
#include <nx/NXCrypto.h>
enum RomSize
{
ROM_SIZE_1GB = 0xFA,
ROM_SIZE_2GB = 0xF8,
ROM_SIZE_4GB = 0xF0,
ROM_SIZE_8GB = 0xE0,
ROM_SIZE_16GB = 0xE1,
ROM_SIZE_32GB = 0xE2
};
enum XciHeaderFlags
{
XCI_FLAG_AUTOBOOT,
XCI_FLAG_HISTORY_ERASE
};
enum CardClockRate
{
CLOCK_RATE_25 = 10551312,
CLOCK_RATE_50 = 10551313,
};
static const size_t kXciPageSize = 0x200;
static const size_t kXciHeaderEncOffset = 0x90;
static const size_t kXciHeaderEncSize = 0x70;
#pragma pack (push, 1)
struct sXciHeader
{
char signature[4]; // 0x00 // "HEAD"
le_uint32_t rom_area_start_page; // 0x04
le_uint32_t backup_area_start_page; // 0x08
byte_t key_flag; // 0x0C // bit0-3 = KekIndex, bit4-7 = TitleKeyDecIndex
byte_t rom_size; // 0x0D // this is an enum
byte_t card_header_version; // 0x0E // CardHeaderVersion
byte_t flags; // 0x0F
le_uint64_t package_id; // 0x10 // stylised as 0x{0:x2}{1:x2}{2:x2}{3:x2}_{4:x2}{5:x2}{6:x2}{7:x2}
le_uint32_t valid_data_end_page; // 0x18
byte_t reserved_01[4]; // 0x1C
byte_t encryption_iv[16]; // 0x20
le_uint64_t partition_fs_header_address; // 0x30
le_uint64_t partition_fs_header_size; // 0x38
byte_t partition_fs_header_hash[0x20]; // 0x40
byte_t initial_data_hash[0x20]; // 0x60
le_uint32_t sel_sec; // 0x80
le_uint32_t sel_t1_key; // 0x84 // SelT1Key
le_uint32_t sel_key; // 0x88 // SelKey
le_uint32_t lim_area; // 0x8C
// START ENCRYPTION
le_uint32_t fw_version[2]; // 0x90 // [0]=minor, [1]=major
le_uint32_t acc_ctrl_1; // 0x98
le_uint32_t wait_1_time_read; // 0x9C // Wait1TimeRead
le_uint32_t wait_2_time_read; // 0xA0 // Wait2TimeRead
le_uint32_t wait_1_time_write; // 0xA4 // Wait1TimeWrite
le_uint32_t wait_2_time_write; // 0xA8 // Wait2TimeWrite
le_uint32_t fw_mode; // 0xAC
le_uint32_t cup_version; // 0xB0
byte_t reserved_03[0x4]; // 0xB4
byte_t upp_hash[8]; // 0xB8 // stylised as 0x{0:x2}{1:x2}{2:x2}{3:x2}_{4:x2}{5:x2}{6:x2}{7:x2}
le_uint64_t cup_id; // 0xC0 // cup programID?
byte_t reserved_04[0x38];
// END ENCRYPTION
};
struct sInitialData
{
byte_t key_source[16]; // { package_id[8], zeros[8]}
byte_t title_key_enc[16];
byte_t ccm_mac[16];
byte_t ccm_nonce[12];
}; // sizeof() = 512 (1 page)
struct sKeyDataArea
{
sInitialData initial_data; // AES128-CCM encrypted {titlekey[16]}
byte_t encrypted_00[0x200*6]; // AES128-CTR encrypted {titlekey[16]}
byte_t encrypted_00_aesctr_data[0x100]; // RSA2048-OAEP-SHA256 encrypted AES-CTR data used for encrypted_00 {key[16],iv[16]}
byte_t reserved_01[0x100];
}; // sizeof() = 512*8 (8 pages)
#pragma pack (pop)
struct sXciKeyData
{
crypto::aes::sAes128Key xci_header_encryption_key;
crypto::aes::sAes128Key initial_data_key;
crypto::rsa::sRsa2048Key xci_header_signer_key;
crypto::rsa::sRsa2048Key card_key_area_oeap_key;
};
/*
void getTitleKeyFromInitialData(const byte_t* initialData, crypto::aes::sAes128Key& titleKey)
{
const sInitialData* data = (const sInitialData*)initialData;
crypto::aes::sAes128Key ccmKey;
crypto::aes::AesEcbDecrypt(data->key_source, 16, key_data.initial_data_key.key, ccmKey.key);
//crypto::aes::AesCcmDecrypt(data->title_key_enc, 16, ccmKey.key, data->ccm_nonce, data->ccm_mac, titleKey.key);
}
*/
inline uint64_t blockToAddr(uint32_t block)
{
return ((uint64_t)block) << 9;
}
inline const char* getBoolStr(bool isTrue)
{
return isTrue? "TRUE" : "FALSE";
}
inline const char* getRomSizeStr(byte_t rom_size)
{
const char* str = "unknown";
switch (rom_size)
{
case (ROM_SIZE_1GB) :
str = "1GB";
break;
case (ROM_SIZE_2GB) :
str = "2GB";
break;
case (ROM_SIZE_4GB) :
str = "4GB";
break;
case (ROM_SIZE_8GB) :
str = "8GB";
break;
case (ROM_SIZE_16GB) :
str = "16GB";
break;
case (ROM_SIZE_32GB) :
str = "32GB";
break;
}
return str;
}
inline const char* getCardClockRate(uint32_t acc_ctrl_1)
{
const char* str = "unknown";
switch (acc_ctrl_1)
{
case (CLOCK_RATE_25) :
str = "20 MHz";
break;
case (CLOCK_RATE_50) :
str = "50 MHz";
break;
}
return str;
}
void dumpHxdStyleSector(byte_t* out, size_t len)
{
// iterate over 0x10 blocks
for (size_t i = 0; i < (len / crypto::aes::kAesBlockSize); i++)
{
// for block i print each byte
for (size_t j = 0; j < crypto::aes::kAesBlockSize; j++)
{
printf("%02X ", out[i*crypto::aes::kAesBlockSize + j]);
}
printf(" ");
for (size_t j = 0; j < crypto::aes::kAesBlockSize; j++)
{
printf("%c", isalnum(out[i*crypto::aes::kAesBlockSize + j]) ? out[i*crypto::aes::kAesBlockSize + j] : '.');
}
printf("\n");
}
/*
for (size_t i = 0; i < len % crypto::aes::kAesBlockSize; i++)
{
printf("%02X ", out[(len / crypto::aes::kAesBlockSize)*crypto::aes::kAesBlockSize + i]);
}
for (size_t i = 0; i < crypto::aes::kAesBlockSize - (len % crypto::aes::kAesBlockSize); i++)
{
printf(" ");
}
for (size_t i = 0; i < len % crypto::aes::kAesBlockSize; i++)
{
printf("%c", out[(len / crypto::aes::kAesBlockSize)*crypto::aes::kAesBlockSize + i]);
}
*/
}
void printXciHeader(const sXciHeader& hdr, bool is_decrypted)
{
be_uint64_t *aes_iv, *hash;
printf("[XCI HEADER]\n");
printf(" Magic: HEAD\n");
printf(" RomAreaStartPage: 0x%0x (0x%" PRIx64 ")\n", hdr.rom_area_start_page.get(), blockToAddr(hdr.rom_area_start_page.get()));
printf(" BackupAreaStartPage: 0x%0x\n", hdr.backup_area_start_page.get());
printf(" KeyFlag: 0x%x\n", hdr.key_flag);
printf(" KekIndex: %d\n", hdr.key_flag & 7);
printf(" TitleKeyDecIndex: %d\n", (hdr.key_flag >> 4) & 7);
printf(" RomSize: 0x%x (%s)\n", hdr.rom_size, getRomSizeStr(hdr.rom_size));
printf(" CardHeaderVersion: %d\n", hdr.card_header_version);
printf(" Flags: 0x%x\n", hdr.flags);
printf(" AutoBoot: %s\n", getBoolStr(_HAS_BIT(hdr.flags, XCI_FLAG_AUTOBOOT)));
printf(" HistoryErase: %s\n", getBoolStr(_HAS_BIT(hdr.flags, XCI_FLAG_HISTORY_ERASE)));
printf(" PackageId: 0x%" PRIx64 "\n", hdr.package_id.get());
printf(" ValidDataEndPage: 0x%x (0x%" PRIx64 ")\n", hdr.valid_data_end_page.get(), blockToAddr(hdr.valid_data_end_page.get()));
aes_iv = (be_uint64_t*)hdr.encryption_iv;
printf(" AesIv: %016" PRIX64 "%016" PRIX64"\n", aes_iv[0].get(), aes_iv[1].get());
printf(" PartitionFs:\n");
printf(" Offset: 0x%" PRIx64 "\n", hdr.partition_fs_header_address.get());
printf(" Size: 0x%" PRIx64 "\n", hdr.partition_fs_header_size.get());
hash = (be_uint64_t*)hdr.partition_fs_header_hash;
printf(" Hash: %016" PRIX64 "%016" PRIX64 "%016" PRIX64 "%016" PRIX64"\n", hash[0].get(),hash[1].get(),hash[2].get(),hash[3].get());
printf(" InitialData:\n");
hash = (be_uint64_t*)hdr.initial_data_hash;
printf(" Hash: %016" PRIX64 "%016" PRIX64 "%016" PRIX64 "%016" PRIX64"\n", hash[0].get(),hash[1].get(),hash[2].get(),hash[3].get());
printf(" SelSec: 0x%x\n", hdr.sel_sec.get());
printf(" SelT1Key: 0x%x\n", hdr.sel_t1_key.get());
printf(" SelKey: 0x%x\n", hdr.sel_key.get());
printf(" LimArea: 0x%x\n", hdr.lim_area.get());
if (is_decrypted == true)
{
printf(" FwVersion: v%d.%d\n", hdr.fw_version[1].get(), hdr.fw_version[0].get());
printf(" AccCtrl1: 0x%x\n", hdr.acc_ctrl_1.get());
printf(" CardClockRate: %s\n", getCardClockRate(hdr.acc_ctrl_1.get()));
printf(" Wait1TimeRead: 0x%x\n", hdr.wait_1_time_read.get());
printf(" Wait2TimeRead: 0x%x\n", hdr.wait_2_time_read.get());
printf(" Wait1TimeWrite: 0x%x\n", hdr.wait_1_time_write.get());
printf(" Wait2TimeWrite: 0x%x\n", hdr.wait_2_time_write.get());
printf(" FwMode: 0x%x\n", hdr.fw_mode.get());
printf(" CupVersion: %d\n", hdr.cup_version.get());
hash = (be_uint64_t*)hdr.upp_hash;
printf(" UppHash: %016" PRIX64 "\n", hash[0].get());
printf(" CupId: %016" PRIx64 "\n", hdr.cup_id.get());
}
}
void decryptXciHeader(const byte_t* src, byte_t* dst)
{
const byte_t* src_iv = ((const sXciHeader*)src)->encryption_iv;
byte_t iv[crypto::aes::kAesBlockSize];
for (size_t i = 0; i < crypto::aes::kAesBlockSize; i++)
{
iv[i] = src_iv[15 - i];
}
// copy plain
memcpy(dst, src, kXciHeaderEncOffset);
// decrypt encrypted
crypto::aes::AesCbcDecrypt(src + kXciHeaderEncOffset, kXciHeaderEncSize, crypto::aes::nx::prod::xci_header_key, iv, dst + kXciHeaderEncOffset);
}
int main(int argc, char** argv)
{
if (argc < 2)
{
printf("usage: %s <xci file>\n", argv[0]);
return 1;
}
fnd::MemoryBlob xciFile;
fnd::io::readFile(argv[1], 0x100, 0x100, xciFile);
sXciHeader* hdr = (sXciHeader*)xciFile.getBytes();
decryptXciHeader(xciFile.getBytes(), xciFile.getBytes());
printXciHeader(*hdr, true);
return 0;
}