1
0
Fork 0
mirror of https://github.com/halpz/re3.git synced 2025-01-22 06:40:57 +00:00
re3/src/Collision.cpp
2019-06-29 11:57:47 +02:00

1890 lines
54 KiB
C++

#include "common.h"
#include "patcher.h"
#include "main.h"
#include "Lists.h"
#include "Game.h"
#include "Zones.h"
#include "General.h"
#include "CullZones.h"
#include "World.h"
#include "Entity.h"
#include "Train.h"
#include "Streaming.h"
#include "Pad.h"
#include "DMAudio.h"
#include "Population.h"
#include "FileLoader.h"
#include "Replay.h"
#include "CutsceneMgr.h"
#include "RenderBuffer.h"
#include "SurfaceTable.h"
#include "Collision.h"
enum Direction
{
DIR_X_POS,
DIR_X_NEG,
DIR_Y_POS,
DIR_Y_NEG,
DIR_Z_POS,
DIR_Z_NEG,
};
eLevelName &CCollision::ms_collisionInMemory = *(eLevelName*)0x8F6250;
CLinkList<CColModel*> &CCollision::ms_colModelCache = *(CLinkList<CColModel*>*)0x95CB58;
void
CCollision::Init(void)
{
ms_colModelCache.Init(NUMCOLCACHELINKS);
ms_collisionInMemory = LEVEL_NONE;
}
void
CCollision::Shutdown(void)
{
ms_colModelCache.Shutdown();
}
void
CCollision::Update(void)
{
CVector playerCoors;
playerCoors = FindPlayerCoors();
eLevelName level = CTheZones::m_CurrLevel;
bool forceLevelChange = false;
if(CTimer::GetTimeInMilliseconds() < 2000 || CCutsceneMgr::IsCutsceneProcessing())
return;
// hardcode a level if there are no zones
if(level == LEVEL_NONE){
if(CGame::currLevel == LEVEL_INDUSTRIAL &&
playerCoors.x < 400.0f){
level = LEVEL_COMMERCIAL;
forceLevelChange = true;
}else if(CGame::currLevel == LEVEL_SUBURBAN &&
playerCoors.x > -450.0f && playerCoors.y < -1400.0f){
level = LEVEL_COMMERCIAL;
forceLevelChange = true;
}else{
if(playerCoors.x > 800.0f){
level = LEVEL_INDUSTRIAL;
forceLevelChange = true;
}else if(playerCoors.x < -800.0f){
level = LEVEL_SUBURBAN;
forceLevelChange = true;
}
}
}
if(level != LEVEL_NONE && level != CGame::currLevel)
CGame::currLevel = level;
if(ms_collisionInMemory != CGame::currLevel)
LoadCollisionWhenINeedIt(forceLevelChange);
CStreaming::HaveAllBigBuildingsLoaded(CGame::currLevel);
}
eLevelName
GetCollisionInSectorList(CPtrList &list)
{
CPtrNode *node;
CEntity *e;
int level;
for(node = list.first; node; node = node->next){
e = (CEntity*)node->item;
level = CModelInfo::GetModelInfo(e->GetModelIndex())->GetColModel()->level;
if(level != LEVEL_NONE)
return (eLevelName)level;
}
return LEVEL_NONE;
}
// Get a level this sector is in based on collision models
eLevelName
GetCollisionInSector(CSector &sect)
{
int level;
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_BUILDINGS]);
if(level == LEVEL_NONE)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_BUILDINGS_OVERLAP]);
if(level == LEVEL_NONE)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_OBJECTS]);
if(level == LEVEL_NONE)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_OBJECTS_OVERLAP]);
if(level == LEVEL_NONE)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_DUMMIES]);
if(level == LEVEL_NONE)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_DUMMIES_OVERLAP]);
return (eLevelName)level;
}
void
CCollision::LoadCollisionWhenINeedIt(bool forceChange)
{
eLevelName level, l;
bool multipleLevels;
CVector playerCoors;
CVehicle *veh;
CEntryInfoNode *ei;
int sx, sy;
int xmin, xmax, ymin, ymax;
int x, y;
level = LEVEL_NONE;
playerCoors = FindPlayerCoors();
sx = CWorld::GetSectorIndexX(playerCoors.x);
sy = CWorld::GetSectorIndexY(playerCoors.y);
multipleLevels = false;
veh = FindPlayerVehicle();
if(veh && veh->IsTrain()){
if(((CTrain*)veh)->m_doorState != TRAIN_DOOR_STATE2)
return ;
}else if(playerCoors.z < 4.0f && !CCullZones::DoINeedToLoadCollision())
return;
// Figure out whose level's collisions we're most likely to be interested in
if(!forceChange){
if(veh && veh->IsBoat()){
// on water we expect to be between levels
multipleLevels = true;
}else{
xmin = max(sx - 1, 0);
xmax = min(sx + 1, NUMSECTORS_X-1);
ymin = max(sy - 1, 0);
ymax = min(sy + 1, NUMSECTORS_Y-1);
for(x = xmin; x <= xmax; x++)
for(y = ymin; y <= ymax; y++){
l = GetCollisionInSector(*CWorld::GetSector(x, y));
if(l != LEVEL_NONE){
if(level == LEVEL_NONE)
level = l;
if(level != l)
multipleLevels = true;
}
}
}
if(multipleLevels && veh && veh->IsBoat())
for(ei = veh->m_entryInfoList.first; ei; ei = ei->next){
level = GetCollisionInSector(*ei->sector);
if(level != LEVEL_NONE)
break;
}
}
if(level == CGame::currLevel || forceChange){
CTimer::Stop();
DMAudio.SetEffectsFadeVol(0);
CPad::StopPadsShaking();
LoadCollisionScreen(CGame::currLevel);
DMAudio.Service();
CPopulation::DealWithZoneChange(ms_collisionInMemory, CGame::currLevel, false);
CStreaming::RemoveIslandsNotUsed(LEVEL_INDUSTRIAL);
CStreaming::RemoveIslandsNotUsed(LEVEL_COMMERCIAL);
CStreaming::RemoveIslandsNotUsed(LEVEL_SUBURBAN);
CStreaming::RemoveBigBuildings(LEVEL_INDUSTRIAL);
CStreaming::RemoveBigBuildings(LEVEL_COMMERCIAL);
CStreaming::RemoveBigBuildings(LEVEL_SUBURBAN);
CModelInfo::RemoveColModelsFromOtherLevels(CGame::currLevel);
CStreaming::RemoveUnusedModelsInLoadedList();
CGame::TidyUpMemory(true, true);
CFileLoader::LoadCollisionFromDatFile(CGame::currLevel);
ms_collisionInMemory = CGame::currLevel;
CReplay::EmptyReplayBuffer();
if(CGame::currLevel != LEVEL_NONE)
LoadSplash(GetLevelSplashScreen(CGame::currLevel));
CStreaming::RemoveUnusedBigBuildings(CGame::currLevel);
CStreaming::RemoveUnusedBuildings(CGame::currLevel);
CStreaming::RequestBigBuildings(CGame::currLevel);
CStreaming::LoadAllRequestedModels(true);
CStreaming::HaveAllBigBuildingsLoaded(CGame::currLevel);
CGame::TidyUpMemory(true, true);
CTimer::Update();
DMAudio.SetEffectsFadeVol(127);
}
}
void
CCollision::SortOutCollisionAfterLoad(void)
{
if(ms_collisionInMemory == CGame::currLevel)
return;
CModelInfo::RemoveColModelsFromOtherLevels(CGame::currLevel);
if(CGame::currLevel != LEVEL_NONE){
CFileLoader::LoadCollisionFromDatFile(CGame::currLevel);
if(!CGame::playingIntro)
LoadSplash(GetLevelSplashScreen(CGame::currLevel));
}
ms_collisionInMemory = CGame::currLevel;
CGame::TidyUpMemory(true, false);
}
void
CCollision::LoadCollisionScreen(eLevelName level)
{
static char *levelNames[4] = {
"",
"IND_ZON",
"COM_ZON",
"SUB_ZON"
};
// Why twice?
LoadingIslandScreen(levelNames[level]);
LoadingIslandScreen(levelNames[level]);
}
//
// Test
//
bool
CCollision::TestSphereSphere(const CColSphere &s1, const CColSphere &s2)
{
float d = s1.radius + s2.radius;
return (s1.center - s2.center).MagnitudeSqr() < d*d;
}
bool
CCollision::TestSphereBox(const CColSphere &sph, const CColBox &box)
{
if(sph.center.x + sph.radius < box.min.x) return false;
if(sph.center.x - sph.radius > box.max.x) return false;
if(sph.center.y + sph.radius < box.min.y) return false;
if(sph.center.y - sph.radius > box.max.y) return false;
if(sph.center.z + sph.radius < box.min.z) return false;
if(sph.center.z - sph.radius > box.max.z) return false;
return true;
}
bool
CCollision::TestLineBox(const CColLine &line, const CColBox &box)
{
float t, x, y, z;
// If either line point is in the box, we have a collision
if(line.p0.x > box.min.x && line.p0.x < box.max.x &&
line.p0.y > box.min.y && line.p0.y < box.max.y &&
line.p0.z > box.min.z && line.p0.z < box.max.z)
return true;
if(line.p1.x > box.min.x && line.p1.x < box.max.x &&
line.p1.y > box.min.y && line.p1.y < box.max.y &&
line.p1.z > box.min.z && line.p1.z < box.max.z)
return true;
// check if points are on opposite sides of min x plane
if((box.min.x - line.p1.x) * (box.min.x - line.p0.x) < 0.0f){
// parameter along line where we intersect
t = (box.min.x - line.p0.x) / (line.p1.x - line.p0.x);
// y of intersection
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y){
// z of intersection
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
return true;
}
}
// same test with max x plane
if((line.p1.x - box.max.x) * (line.p0.x - box.max.x) < 0.0f){
t = (line.p0.x - box.max.x) / (line.p0.x - line.p1.x);
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
return true;
}
}
// min y plne
if((box.min.y - line.p0.y) * (box.min.y - line.p1.y) < 0.0f){
t = (box.min.y - line.p0.y) / (line.p1.y - line.p0.y);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
return true;
}
}
// max y plane
if((line.p0.y - box.max.y) * (line.p1.y - box.max.y) < 0.0f){
t = (line.p0.y - box.max.y) / (line.p0.y - line.p1.y);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
return true;
}
}
// min z plne
if((box.min.z - line.p0.z) * (box.min.z - line.p1.z) < 0.0f){
t = (box.min.z - line.p0.z) / (line.p1.z - line.p0.z);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y)
return true;
}
}
// max z plane
if((line.p0.z - box.max.z) * (line.p1.z - box.max.z) < 0.0f){
t = (line.p0.z - box.max.z) / (line.p0.z - line.p1.z);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y)
return true;
}
}
return false;
}
bool
CCollision::TestVerticalLineBox(const CColLine &line, const CColBox &box)
{
if(line.p0.x <= box.min.x) return false;
if(line.p0.y <= box.min.y) return false;
if(line.p0.x >= box.max.x) return false;
if(line.p0.y >= box.max.y) return false;
if(line.p0.z < line.p1.z){
if(line.p0.z > box.max.z) return false;
if(line.p1.z < box.min.z) return false;
}else{
if(line.p1.z > box.max.z) return false;
if(line.p0.z < box.min.z) return false;
}
return true;
}
bool
CCollision::TestLineTriangle(const CColLine &line, const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane)
{
float t;
CVector normal;
plane.GetNormal(normal);
// if points are on the same side, no collision
if(plane.CalcPoint(line.p0) * plane.CalcPoint(line.p1) > 0.0f)
return false;
// intersection parameter on line
t = -plane.CalcPoint(line.p0) / DotProduct(line.p1 - line.p0, normal);
// find point of intersection
CVector p = line.p0 + (line.p1-line.p0)*t;
const CVector &va = verts[tri.a];
const CVector &vb = verts[tri.b];
const CVector &vc = verts[tri.c];
CVector2D vec1, vec2, vec3, vect;
// We do the test in 2D. With the plane direction we
// can figure out how to project the vectors.
// normal = (c-a) x (b-a)
switch(plane.dir){
case DIR_X_POS:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vc.y; vec2.y = vc.z;
vec3.x = vb.y; vec3.y = vb.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_X_NEG:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vb.y; vec2.y = vb.z;
vec3.x = vc.y; vec3.y = vc.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_Y_POS:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vc.z; vec2.y = vc.x;
vec3.x = vb.z; vec3.y = vb.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Y_NEG:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vb.z; vec2.y = vb.x;
vec3.x = vc.z; vec3.y = vc.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Z_POS:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vc.x; vec2.y = vc.y;
vec3.x = vb.x; vec3.y = vb.y;
vect.x = p.x; vect.y = p.y;
break;
case DIR_Z_NEG:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vb.x; vec2.y = vb.y;
vec3.x = vc.x; vec3.y = vc.y;
vect.x = p.x; vect.y = p.y;
break;
default:
assert(0);
}
// This is our triangle:
// 3-------2
// \ P /
// \ /
// \ /
// 1
// We can use the "2d cross product" to check on which side
// a vector is of another. Test is true if point is inside of all edges.
if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false;
if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false;
if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false;
return true;
}
// Test if line segment intersects with sphere.
// If the first point is inside the sphere this test does not register a collision!
// The code is reversed from the original code and rather ugly, see Process for a clear version.
// TODO: actually rewrite this mess
bool
CCollision::TestLineSphere(const CColLine &line, const CColSphere &sph)
{
CVector v01 = line.p1 - line.p0; // vector from p0 to p1
CVector v0c = sph.center - line.p0; // vector from p0 to center
float linesq = v01.MagnitudeSqr();
// I leave in the strange -2 factors even though they serve no real purpose
float projline = -2.0f * DotProduct(v01, v0c); // project v0c onto line
// Square of tangent from p0 multiplied by line length so we can compare with projline.
// The length of the tangent would be this: sqrt((c-p0)^2 - r^2).
// Negative if p0 is inside the sphere! This breaks the test!
float tansq = 4.0f * linesq *
(sph.center.MagnitudeSqr() - 2.0f*DotProduct(sph.center, line.p0) + line.p0.MagnitudeSqr() - sph.radius*sph.radius);
float diffsq = projline*projline - tansq;
// if diffsq < 0 that means the line is a passant, so no intersection
if(diffsq < 0.0f)
return false;
// projline (negative in GTA for some reason) is the point on the line
// in the middle of the two intersection points (startin from p0).
// sqrt(diffsq) somehow works out to be the distance from that
// midpoint to the intersection points.
// So subtract that and get rid of the awkward scaling:
float f = (-projline - sqrt(diffsq)) / (2.0f*linesq);
// f should now be in range [0, 1] for [p0, p1]
return f >= 0.0f && f <= 1.0f;
}
bool
CCollision::TestSphereTriangle(const CColSphere &sphere,
const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane)
{
// If sphere and plane don't intersect, no collision
if(fabs(plane.CalcPoint(sphere.center)) > sphere.radius)
return false;
const CVector &va = verts[tri.a];
const CVector &vb = verts[tri.b];
const CVector &vc = verts[tri.c];
// calculate two orthogonal basis vectors for the triangle
CVector vec2 = vb - va;
float len = vec2.Magnitude();
vec2 = vec2 * (1.0f/len);
CVector vec1 = CrossProduct(vec2, plane.normal);
// We know A has local coordinate [0,0] and B has [0,len].
// Now calculate coordinates on triangle for these two vectors:
CVector vac = vc - va;
CVector vas = sphere.center - va;
CVector2D b(0.0f, len);
CVector2D c(DotProduct(vec1, vac), DotProduct(vec2, vac));
CVector2D s(DotProduct(vec1, vas), DotProduct(vec2, vas));
// The three triangle lines partition the space into 6 sectors,
// find out in which the center lies.
int insideAB = CrossProduct2D(s, b) >= 0.0f;
int insideAC = CrossProduct2D(c, s) >= 0.0f;
int insideBC = CrossProduct2D(s-b, c-b) >= 0.0f;
int testcase = insideAB + insideAC + insideBC;
float dist = 0.0f;
if(testcase == 1){
// closest to a vertex
if(insideAB) dist = (sphere.center - vc).Magnitude();
else if(insideAC) dist = (sphere.center - vb).Magnitude();
else if(insideBC) dist = (sphere.center - va).Magnitude();
else assert(0);
}else if(testcase == 2){
// closest to an edge
if(!insideAB) dist = DistToLine(&va, &vb, &sphere.center);
else if(!insideAC) dist = DistToLine(&va, &vc, &sphere.center);
else if(!insideBC) dist = DistToLine(&vb, &vc, &sphere.center);
else assert(0);
}else if(testcase == 3){
// center is in triangle
return true;
}else
assert(0); // front fell off
return dist < sphere.radius;
}
bool
CCollision::TestLineOfSight(const CColLine &line, const CMatrix &matrix, CColModel &model, bool ignoreSeeThrough)
{
static CMatrix matTransform;
int i;
// transform line to model space
Invert(matrix, matTransform);
CColLine newline(matTransform * line.p0, matTransform * line.p1);
// If we don't intersect with the bounding box, no chance on the rest
if(!TestLineBox(newline, model.boundingBox))
return false;
for(i = 0; i < model.numSpheres; i++)
if(!ignoreSeeThrough || model.spheres[i].surface != SURFACE_GLASS && model.spheres[i].surface != SURFACE_SCAFFOLD)
if(TestLineSphere(newline, model.spheres[i]))
return true;
for(i = 0; i < model.numBoxes; i++)
if(!ignoreSeeThrough || model.boxes[i].surface != SURFACE_GLASS && model.boxes[i].surface != SURFACE_SCAFFOLD)
if(TestLineBox(newline, model.boxes[i]))
return true;
CalculateTrianglePlanes(&model);
for(i = 0; i < model.numTriangles; i++)
if(!ignoreSeeThrough || model.triangles[i].surface != SURFACE_GLASS && model.triangles[i].surface != SURFACE_SCAFFOLD)
if(TestLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i]))
return true;
return false;
}
//
// Process
//
// For Spheres mindist is the squared distance to its center
// For Lines mindist is between [0,1]
bool
CCollision::ProcessSphereSphere(const CColSphere &s1, const CColSphere &s2, CColPoint &point, float &mindistsq)
{
CVector dist = s1.center - s2.center;
float d = dist.Magnitude() - s2.radius; // distance from s1's center to s2
float dc = d < 0.0f ? 0.0f : d; // clamp to zero, i.e. if s1's center is inside s2
// no collision if sphere is not close enough
if(mindistsq <= dc*dc || s1.radius <= dc)
return false;
dist.Normalise();
point.point = s1.center - dist*dc;
point.normal = dist;
point.surfaceA = s1.surface;
point.pieceA = s1.piece;
point.surfaceB = s2.surface;
point.pieceB = s2.piece;
point.depth = s1.radius - d; // sphere overlap
mindistsq = dc*dc; // collision radius
return true;
}
bool
CCollision::ProcessSphereBox(const CColSphere &sph, const CColBox &box, CColPoint &point, float &mindistsq)
{
CVector p;
CVector dist;
// GTA's code is too complicated, uses a huge 3x3x3 if statement
// we can simplify the structure a lot
// first make sure we have a collision at all
if(sph.center.x + sph.radius < box.min.x) return false;
if(sph.center.x - sph.radius > box.max.x) return false;
if(sph.center.y + sph.radius < box.min.y) return false;
if(sph.center.y - sph.radius > box.max.y) return false;
if(sph.center.z + sph.radius < box.min.z) return false;
if(sph.center.z - sph.radius > box.max.z) return false;
// Now find out where the sphere center lies in relation to all the sides
int xpos = sph.center.x < box.min.x ? 1 :
sph.center.x > box.max.x ? 2 :
0;
int ypos = sph.center.y < box.min.y ? 1 :
sph.center.y > box.max.y ? 2 :
0;
int zpos = sph.center.z < box.min.z ? 1 :
sph.center.z > box.max.z ? 2 :
0;
if(xpos == 0 && ypos == 0 && zpos == 0){
// sphere is inside the box
p = (box.min + box.max)*0.5f;
dist = sph.center - p;
float lensq = dist.MagnitudeSqr();
if(lensq < mindistsq){
point.normal = dist * (1.0f/sqrt(lensq));
point.point = sph.center - point.normal;
point.surfaceA = sph.surface;
point.pieceA = sph.piece;
point.surfaceB = box.surface;
point.pieceB = box.piece;
// find absolute distance to the closer side in each dimension
float dx = dist.x > 0.0f ?
box.max.x - sph.center.x :
sph.center.x - box.min.x;
float dy = dist.y > 0.0f ?
box.max.y - sph.center.y :
sph.center.y - box.min.y;
float dz = dist.z > 0.0f ?
box.max.z - sph.center.z :
sph.center.z - box.min.z;
// collision depth is maximum of that:
if(dx > dy && dx > dz)
point.depth = dx;
else if(dy > dz)
point.depth = dy;
else
point.depth = dz;
return true;
}
}else{
// sphere is outside.
// closest point on box:
p.x = xpos == 1 ? box.min.x :
xpos == 2 ? box.max.x :
sph.center.x;
p.y = ypos == 1 ? box.min.y :
ypos == 2 ? box.max.y :
sph.center.y;
p.z = zpos == 1 ? box.min.z :
zpos == 2 ? box.max.z :
sph.center.z;
dist = sph.center - p;
float lensq = dist.MagnitudeSqr();
if(lensq < mindistsq){
float len = sqrt(lensq);
point.point = p;
point.normal = dist * (1.0f/len);
point.surfaceA = sph.surface;
point.pieceA = sph.piece;
point.surfaceB = box.surface;
point.pieceB = box.piece;
point.depth = sph.radius - len;
mindistsq = lensq;
return true;
}
}
return false;
}
bool
CCollision::ProcessLineBox(const CColLine &line, const CColBox &box, CColPoint &point, float &mindist)
{
float mint, t, x, y, z;
CVector normal;
CVector p;
mint = 1.0f;
// check if points are on opposite sides of min x plane
if((box.min.x - line.p1.x) * (box.min.x - line.p0.x) < 0.0f){
// parameter along line where we intersect
t = (box.min.x - line.p0.x) / (line.p1.x - line.p0.x);
// y of intersection
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y){
// z of intersection
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
if(t < mint){
mint = t;
p = CVector(box.min.x, y, z);
normal = CVector(-1.0f, 0.0f, 0.0f);
}
}
}
// max x plane
if((line.p1.x - box.max.x) * (line.p0.x - box.max.x) < 0.0f){
t = (line.p0.x - box.max.x) / (line.p0.x - line.p1.x);
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
if(t < mint){
mint = t;
p = CVector(box.max.x, y, z);
normal = CVector(1.0f, 0.0f, 0.0f);
}
}
}
// min y plne
if((box.min.y - line.p0.y) * (box.min.y - line.p1.y) < 0.0f){
t = (box.min.y - line.p0.y) / (line.p1.y - line.p0.y);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
if(t < mint){
mint = t;
p = CVector(x, box.min.y, z);
normal = CVector(0.0f, -1.0f, 0.0f);
}
}
}
// max y plane
if((line.p0.y - box.max.y) * (line.p1.y - box.max.y) < 0.0f){
t = (line.p0.y - box.max.y) / (line.p0.y - line.p1.y);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
if(t < mint){
mint = t;
p = CVector(x, box.max.y, z);
normal = CVector(0.0f, 1.0f, 0.0f);
}
}
}
// min z plne
if((box.min.z - line.p0.z) * (box.min.z - line.p1.z) < 0.0f){
t = (box.min.z - line.p0.z) / (line.p1.z - line.p0.z);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y)
if(t < mint){
mint = t;
p = CVector(x, y, box.min.z);
normal = CVector(0.0f, 0.0f, -1.0f);
}
}
}
// max z plane
if((line.p0.z - box.max.z) * (line.p1.z - box.max.z) < 0.0f){
t = (line.p0.z - box.max.z) / (line.p0.z - line.p1.z);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y)
if(t < mint){
mint = t;
p = CVector(x, y, box.max.z);
normal = CVector(0.0f, 0.0f, 1.0f);
}
}
}
if(mint >= mindist)
return false;
point.point = p;
point.normal = normal;
point.surfaceA = 0;
point.pieceA = 0;
point.surfaceB = box.surface;
point.pieceB = box.piece;
mindist = mint;
return true;
}
// If line.p0 lies inside sphere, no collision is registered.
bool
CCollision::ProcessLineSphere(const CColLine &line, const CColSphere &sphere, CColPoint &point, float &mindist)
{
CVector v01 = line.p1 - line.p0;
CVector v0c = sphere.center - line.p0;
float linesq = v01.MagnitudeSqr();
// project v0c onto v01, scaled by |v01| this is the midpoint of the two intersections
float projline = DotProduct(v01, v0c);
// tangent of p0 to sphere, scaled by linesq just like projline^2
float tansq = (v0c.MagnitudeSqr() - sphere.radius*sphere.radius) * linesq;
// this works out to be the square of the distance between the midpoint and the intersections
float diffsq = projline*projline - tansq;
// no intersection
if(diffsq < 0.0f)
return false;
// point of first intersection, in range [0,1] between p0 and p1
float t = (projline - sqrt(diffsq)) / linesq;
// if not on line or beyond mindist, no intersection
if(t < 0.0f || t > 1.0f || t >= mindist)
return false;
point.point = line.p0 + v01*t;
point.normal = point.point - sphere.center;
point.normal.Normalise();
point.surfaceA = 0;
point.pieceA = 0;
point.surfaceB = sphere.surface;
point.pieceB = sphere.piece;
mindist = t;
return true;
}
bool
CCollision::ProcessVerticalLineTriangle(const CColLine &line,
const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane,
CColPoint &point, float &mindist, CStoredCollPoly *poly)
{
float t;
CVector normal;
const CVector &p0 = line.p0;
const CVector &va = verts[tri.a];
const CVector &vb = verts[tri.b];
const CVector &vc = verts[tri.c];
// early out bound rect test
if(p0.x < va.x && p0.x < vb.x && p0.x < vc.x) return false;
if(p0.x > va.x && p0.x > vb.x && p0.x > vc.x) return false;
if(p0.y < va.y && p0.y < vb.y && p0.y < vc.y) return false;
if(p0.y > va.y && p0.y > vb.y && p0.y > vc.y) return false;
plane.GetNormal(normal);
// if points are on the same side, no collision
if(plane.CalcPoint(p0) * plane.CalcPoint(line.p1) > 0.0f)
return false;
// intersection parameter on line
float h = (line.p1 - p0).z;
t = -plane.CalcPoint(p0) / (h * normal.z);
// early out if we're beyond the mindist
if(t >= mindist)
return false;
CVector p(p0.x, p0.y, p0.z + h*t);
CVector2D vec1, vec2, vec3, vect;
switch(plane.dir){
case DIR_X_POS:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vc.y; vec2.y = vc.z;
vec3.x = vb.y; vec3.y = vb.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_X_NEG:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vb.y; vec2.y = vb.z;
vec3.x = vc.y; vec3.y = vc.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_Y_POS:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vc.z; vec2.y = vc.x;
vec3.x = vb.z; vec3.y = vb.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Y_NEG:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vb.z; vec2.y = vb.x;
vec3.x = vc.z; vec3.y = vc.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Z_POS:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vc.x; vec2.y = vc.y;
vec3.x = vb.x; vec3.y = vb.y;
vect.x = p.x; vect.y = p.y;
break;
case DIR_Z_NEG:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vb.x; vec2.y = vb.y;
vec3.x = vc.x; vec3.y = vc.y;
vect.x = p.x; vect.y = p.y;
break;
default:
assert(0);
}
if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false;
if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false;
if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false;
point.point = p;
point.normal = normal;
point.surfaceA = 0;
point.pieceA = 0;
point.surfaceB = tri.surface;
point.pieceB = 0;
if(poly){
poly->verts[0] = va;
poly->verts[1] = vb;
poly->verts[2] = vc;
poly->valid = true;
}
mindist = t;
return true;
}
bool
CCollision::ProcessLineTriangle(const CColLine &line ,
const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane,
CColPoint &point, float &mindist)
{
float t;
CVector normal;
plane.GetNormal(normal);
// if points are on the same side, no collision
if(plane.CalcPoint(line.p0) * plane.CalcPoint(line.p1) > 0.0f)
return false;
// intersection parameter on line
t = -plane.CalcPoint(line.p0) / DotProduct(line.p1 - line.p0, normal);
// early out if we're beyond the mindist
if(t >= mindist)
return false;
// find point of intersection
CVector p = line.p0 + (line.p1-line.p0)*t;
const CVector &va = verts[tri.a];
const CVector &vb = verts[tri.b];
const CVector &vc = verts[tri.c];
CVector2D vec1, vec2, vec3, vect;
switch(plane.dir){
case DIR_X_POS:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vc.y; vec2.y = vc.z;
vec3.x = vb.y; vec3.y = vb.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_X_NEG:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vb.y; vec2.y = vb.z;
vec3.x = vc.y; vec3.y = vc.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_Y_POS:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vc.z; vec2.y = vc.x;
vec3.x = vb.z; vec3.y = vb.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Y_NEG:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vb.z; vec2.y = vb.x;
vec3.x = vc.z; vec3.y = vc.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Z_POS:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vc.x; vec2.y = vc.y;
vec3.x = vb.x; vec3.y = vb.y;
vect.x = p.x; vect.y = p.y;
break;
case DIR_Z_NEG:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vb.x; vec2.y = vb.y;
vec3.x = vc.x; vec3.y = vc.y;
vect.x = p.x; vect.y = p.y;
break;
default:
assert(0);
}
if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false;
if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false;
if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false;
point.point = p;
point.normal = normal;
point.surfaceA = 0;
point.pieceA = 0;
point.surfaceB = tri.surface;
point.pieceB = 0;
mindist = t;
return true;
}
bool
CCollision::ProcessSphereTriangle(const CColSphere &sphere,
const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane,
CColPoint &point, float &mindistsq)
{
// If sphere and plane don't intersect, no collision
float planedist = plane.CalcPoint(sphere.center);
float distsq = planedist*planedist;
if(fabs(planedist) > sphere.radius || distsq > mindistsq)
return false;
const CVector &va = verts[tri.a];
const CVector &vb = verts[tri.b];
const CVector &vc = verts[tri.c];
// calculate two orthogonal basis vectors for the triangle
CVector normal;
plane.GetNormal(normal);
CVector vec2 = vb - va;
float len = vec2.Magnitude();
vec2 = vec2 * (1.0f/len);
CVector vec1 = CrossProduct(vec2, normal);
// We know A has local coordinate [0,0] and B has [0,len].
// Now calculate coordinates on triangle for these two vectors:
CVector vac = vc - va;
CVector vas = sphere.center - va;
CVector2D b(0.0f, len);
CVector2D c(DotProduct(vec1, vac), DotProduct(vec2, vac));
CVector2D s(DotProduct(vec1, vas), DotProduct(vec2, vas));
// The three triangle lines partition the space into 6 sectors,
// find out in which the center lies.
int insideAB = CrossProduct2D(s, b) >= 0.0f;
int insideAC = CrossProduct2D(c, s) >= 0.0f;
int insideBC = CrossProduct2D(s-b, c-b) >= 0.0f;
int testcase = insideAB + insideAC + insideBC;
float dist = 0.0f;
CVector p;
if(testcase == 1){
// closest to a vertex
if(insideAB) p = vc;
else if(insideAC) p = vb;
else if(insideBC) p = va;
else assert(0);
dist = (sphere.center - p).Magnitude();
}else if(testcase == 2){
// closest to an edge
if(!insideAB) dist = DistToLine(&va, &vb, &sphere.center, p);
else if(!insideAC) dist = DistToLine(&va, &vc, &sphere.center, p);
else if(!insideBC) dist = DistToLine(&vb, &vc, &sphere.center, p);
else assert(0);
}else if(testcase == 3){
// center is in triangle
dist = fabs(planedist);
p = sphere.center - normal*planedist;
}else
assert(0); // front fell off
if(dist >= sphere.radius || dist*dist >= mindistsq)
return false;
point.point = p;
point.normal = sphere.center - p;
point.normal.Normalise();
point.surfaceA = sphere.surface;
point.pieceA = sphere.piece;
point.surfaceB = tri.surface;
point.pieceB = 0;
point.depth = sphere.radius - dist;
mindistsq = dist*dist;
return true;
}
bool
CCollision::ProcessLineOfSight(const CColLine &line,
const CMatrix &matrix, CColModel &model,
CColPoint &point, float &mindist, bool ignoreSeeThrough)
{
static CMatrix matTransform;
int i;
// transform line to model space
Invert(matrix, matTransform);
CColLine newline(matTransform * line.p0, matTransform * line.p1);
// If we don't intersect with the bounding box, no chance on the rest
if(!TestLineBox(newline, model.boundingBox))
return false;
float coldist = mindist;
for(i = 0; i < model.numSpheres; i++)
if(!ignoreSeeThrough || model.spheres[i].surface != SURFACE_GLASS && model.spheres[i].surface != SURFACE_SCAFFOLD)
ProcessLineSphere(newline, model.spheres[i], point, coldist);
for(i = 0; i < model.numBoxes; i++)
if(!ignoreSeeThrough || model.boxes[i].surface != SURFACE_GLASS && model.boxes[i].surface != SURFACE_SCAFFOLD)
ProcessLineBox(newline, model.boxes[i], point, coldist);
CalculateTrianglePlanes(&model);
for(i = 0; i < model.numTriangles; i++)
if(!ignoreSeeThrough || model.triangles[i].surface != SURFACE_GLASS && model.triangles[i].surface != SURFACE_SCAFFOLD)
ProcessLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i], point, coldist);
if(coldist < mindist){
point.point = matrix * point.point;
point.normal = Multiply3x3(matrix, point.normal);
mindist = coldist;
return true;
}
return false;
}
bool
CCollision::ProcessVerticalLine(const CColLine &line,
const CMatrix &matrix, CColModel &model,
CColPoint &point, float &mindist, bool ignoreSeeThrough, CStoredCollPoly *poly)
{
static CStoredCollPoly TempStoredPoly;
int i;
// transform line to model space
// Why does the game seem to do this differently than above?
CColLine newline(MultiplyInverse(matrix, line.p0), MultiplyInverse(matrix, line.p1));
newline.p1.x = newline.p0.x;
newline.p1.y = newline.p0.y;
if(!TestVerticalLineBox(newline, model.boundingBox))
return false;
float coldist = mindist;
for(i = 0; i < model.numSpheres; i++)
if(!ignoreSeeThrough || model.spheres[i].surface != SURFACE_GLASS && model.spheres[i].surface != SURFACE_SCAFFOLD)
ProcessLineSphere(newline, model.spheres[i], point, coldist);
for(i = 0; i < model.numBoxes; i++)
if(!ignoreSeeThrough || model.boxes[i].surface != SURFACE_GLASS && model.boxes[i].surface != SURFACE_SCAFFOLD)
ProcessLineBox(newline, model.boxes[i], point, coldist);
CalculateTrianglePlanes(&model);
TempStoredPoly.valid = false;
for(i = 0; i < model.numTriangles; i++)
if(!ignoreSeeThrough || model.triangles[i].surface != SURFACE_GLASS && model.triangles[i].surface != SURFACE_SCAFFOLD)
ProcessVerticalLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i], point, coldist, &TempStoredPoly);
if(coldist < mindist){
point.point = matrix * point.point;
point.normal = Multiply3x3(matrix, point.normal);
if(poly && TempStoredPoly.valid){
*poly = TempStoredPoly;
poly->verts[0] = matrix * poly->verts[0];
poly->verts[1] = matrix * poly->verts[1];
poly->verts[2] = matrix * poly->verts[2];
}
mindist = coldist;
return true;
}
return false;
}
enum {
MAXNUMSPHERES = 128,
MAXNUMBOXES = 32,
MAXNUMLINES = 16,
MAXNUMTRIS = 600
};
// This checks model A's spheres and lines against model B's spheres, boxes and triangles.
// Returns the number of A's spheres that collide.
// Returned ColPoints are in world space.
// NB: lines do not seem to be supported very well, use with caution
int32
CCollision::ProcessColModels(const CMatrix &matrixA, CColModel &modelA,
const CMatrix &matrixB, CColModel &modelB,
CColPoint *spherepoints, CColPoint *linepoints, float *linedists)
{
static int aSphereIndicesA[MAXNUMSPHERES];
static int aLineIndicesA[MAXNUMLINES];
static int aSphereIndicesB[MAXNUMSPHERES];
static int aBoxIndicesB[MAXNUMBOXES];
static int aTriangleIndicesB[MAXNUMTRIS];
static bool aCollided[MAXNUMLINES];
static CColSphere aSpheresA[MAXNUMSPHERES];
static CColLine aLinesA[MAXNUMLINES];
static CMatrix matAB, matBA;
CColSphere s;
int i, j;
assert(modelA.numSpheres <= MAXNUMSPHERES);
assert(modelA.numLines <= MAXNUMLINES);
// From model A space to model B space
matAB = Invert(matrixB, matAB) * matrixA;
CColSphere bsphereAB; // bounding sphere of A in B space
bsphereAB.Set(modelA.boundingSphere.radius, matAB * modelA.boundingSphere.center);
if(!TestSphereBox(bsphereAB, modelB.boundingBox))
return 0;
// B to A space
matBA = Invert(matrixA, matBA) * matrixB;
// transform modelA's spheres and lines to B space
for(i = 0; i < modelA.numSpheres; i++){
CColSphere &s = modelA.spheres[i];
aSpheresA[i].Set(s.radius, matAB * s.center, s.surface, s.piece);
}
for(i = 0; i < modelA.numLines; i++)
aLinesA[i].Set(matAB * modelA.lines[i].p0, matAB * modelA.lines[i].p1);
// Test them against model B's bounding volumes
int numSpheresA = 0;
int numLinesA = 0;
for(i = 0; i < modelA.numSpheres; i++)
if(TestSphereBox(aSpheresA[i], modelB.boundingBox))
aSphereIndicesA[numSpheresA++] = i;
// no actual check???
for(i = 0; i < modelA.numLines; i++)
aLineIndicesA[numLinesA++] = i;
// No collision
if(numSpheresA == 0 && numLinesA == 0)
return 0;
// Check model B against A's bounding volumes
int numSpheresB = 0;
int numBoxesB = 0;
int numTrianglesB = 0;
for(i = 0; i < modelB.numSpheres; i++){
s.Set(modelB.spheres[i].radius, matBA * modelB.spheres[i].center);
if(TestSphereBox(s, modelA.boundingBox))
aSphereIndicesB[numSpheresB++] = i;
}
for(i = 0; i < modelB.numBoxes; i++)
if(TestSphereBox(bsphereAB, modelB.boxes[i]))
aBoxIndicesB[numBoxesB++] = i;
CalculateTrianglePlanes(&modelB);
for(i = 0; i < modelB.numTriangles; i++)
if(TestSphereTriangle(bsphereAB, modelB.vertices, modelB.triangles[i], modelB.trianglePlanes[i]))
aTriangleIndicesB[numTrianglesB++] = i;
assert(numSpheresB <= MAXNUMSPHERES);
assert(numBoxesB <= MAXNUMBOXES);
assert(numTrianglesB <= MAXNUMTRIS);
// No collision
if(numSpheresB == 0 && numBoxesB == 0 && numTrianglesB == 0)
return 0;
// We now have the collision volumes in A and B that are worth processing.
// Process A's spheres against B's collision volumes
int numCollisions = 0;
for(i = 0; i < numSpheresA; i++){
float coldist = 1.0e24f;
bool hasCollided = false;
for(j = 0; j < numSpheresB; j++)
hasCollided |= ProcessSphereSphere(
aSpheresA[aSphereIndicesA[i]],
modelB.spheres[aSphereIndicesB[j]],
spherepoints[numCollisions], coldist);
for(j = 0; j < numBoxesB; j++)
hasCollided |= ProcessSphereBox(
aSpheresA[aSphereIndicesA[i]],
modelB.boxes[aBoxIndicesB[j]],
spherepoints[numCollisions], coldist);
for(j = 0; j < numTrianglesB; j++)
hasCollided |= ProcessSphereTriangle(
aSpheresA[aSphereIndicesA[i]],
modelB.vertices,
modelB.triangles[aTriangleIndicesB[j]],
modelB.trianglePlanes[aTriangleIndicesB[j]],
spherepoints[numCollisions], coldist);
if(hasCollided)
numCollisions++;
}
for(i = 0; i < numCollisions; i++){
spherepoints[i].point = matrixB * spherepoints[i].point;
spherepoints[i].normal = Multiply3x3(matrixB, spherepoints[i].normal);
}
// And the same thing for the lines in A
for(i = 0; i < numLinesA; i++){
aCollided[i] = false;
for(j = 0; j < numSpheresB; j++)
aCollided[i] |= ProcessLineSphere(
aLinesA[aLineIndicesA[i]],
modelB.spheres[aSphereIndicesB[j]],
linepoints[aLineIndicesA[i]],
linedists[aLineIndicesA[i]]);
for(j = 0; j < numBoxesB; j++)
aCollided[i] |= ProcessLineBox(
aLinesA[aLineIndicesA[i]],
modelB.boxes[aBoxIndicesB[j]],
linepoints[aLineIndicesA[i]],
linedists[aLineIndicesA[i]]);
for(j = 0; j < numTrianglesB; j++)
aCollided[i] |= ProcessLineTriangle(
aLinesA[aLineIndicesA[i]],
modelB.vertices,
modelB.triangles[aTriangleIndicesB[j]],
modelB.trianglePlanes[aTriangleIndicesB[j]],
linepoints[aLineIndicesA[i]],
linedists[aLineIndicesA[i]]);
}
for(i = 0; i < numLinesA; i++)
if(aCollided[i]){
j = aLineIndicesA[i];
linepoints[j].point = matrixB * linepoints[j].point;
linepoints[j].normal = Multiply3x3(matrixB, linepoints[j].normal);
}
return numCollisions; // sphere collisions
}
//
// Misc
//
float
CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *point)
{
float lensq = (*l1 - *l0).MagnitudeSqr();
float dot = DotProduct(*point - *l0, *l1 - *l0);
// Between 0 and len we're above the line.
// if not, calculate distance to endpoint
if(dot <= 0.0f)
return (*point - *l0).Magnitude();
if(dot >= lensq)
return (*point - *l1).Magnitude();
// distance to line
return sqrt((*point - *l0).MagnitudeSqr() - dot*dot/lensq);
}
// same as above but also return the point on the line
float
CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *point, CVector &closest)
{
float lensq = (*l1 - *l0).MagnitudeSqr();
float dot = DotProduct(*point - *l0, *l1 - *l0);
// find out which point we're closest to
if(dot <= 0.0f)
closest = *l0;
else if(dot >= lensq)
closest = *l1;
else
closest = *l0 + (*l1 - *l0)*(dot/lensq);
// this is the distance
return (*point - closest).Magnitude();
}
void
CCollision::CalculateTrianglePlanes(CColModel *model)
{
if(model->numTriangles == 0)
return;
CLink<CColModel*> *lptr;
if(model->trianglePlanes){
// re-insert at front so it's not removed again soon
lptr = model->GetLinkPtr();
lptr->Remove();
ms_colModelCache.head.Insert(lptr);
}else{
assert(model);
lptr = ms_colModelCache.Insert(model);
if(lptr == nil){
// make room if we have to, remove last in list
lptr = ms_colModelCache.tail.prev;
assert(lptr);
assert(lptr->item);
lptr->item->RemoveTrianglePlanes();
ms_colModelCache.Remove(lptr);
// now this cannot fail
lptr = ms_colModelCache.Insert(model);
assert(lptr);
}
model->CalculateTrianglePlanes();
model->SetLinkPtr(lptr);
}
}
void
CCollision::DrawColModel(const CMatrix &mat, const CColModel &colModel)
{
}
void
CCollision::DrawColModel_Coloured(const CMatrix &mat, const CColModel &colModel, int32 id)
{
int i;
int s;
float f;
CVector verts[8];
CVector min, max;
int r, g, b;
RwImVertexIndex *iptr;
RwIm3DVertex *vptr;
RenderBuffer::ClearRenderBuffer();
RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA);
RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA);
RwRenderStateSet(rwRENDERSTATETEXTURERASTER, nil);
extern int gDbgSurf;
for(i = 0; i < colModel.numTriangles; i++){
colModel.GetTrianglePoint(verts[0], colModel.triangles[i].a);
colModel.GetTrianglePoint(verts[1], colModel.triangles[i].b);
colModel.GetTrianglePoint(verts[2], colModel.triangles[i].c);
verts[0] = mat * verts[0];
verts[1] = mat * verts[1];
verts[2] = mat * verts[2];
// TODO: surface
r = 255;
g = 128;
b = 0;
s = colModel.triangles[i].surface;
f = (s & 0xF)/32.0f + 0.5f;
switch(CSurfaceTable::GetAdhesionGroup(s)){
case ADHESIVE_RUBBER:
r = f * 255.0f;
g = 0;
b = 0;
break;
case ADHESIVE_HARD:
r = f*255.0f;
g = f*255.0f;
b = f*128.0f;
break;
case ADHESIVE_ROAD:
r = f*128.0f;
g = f*128.0f;
b = f*128.0f;
break;
case ADHESIVE_LOOSE:
r = 0;
g = f * 255.0f;
b = 0;
break;
case ADHESIVE_WET:
r = 0;
g = 0;
b = f * 255.0f;
break;
default:
// this doesn't make much sense
r *= f;
g *= f;
b *= f;
}
// TODO: make some surface types flicker?
//if(s != gDbgSurf) continue;
if(s > SURFACE_32){
r = CGeneral::GetRandomNumber();
g = CGeneral::GetRandomNumber();
b = CGeneral::GetRandomNumber();
printf("Illegal surfacetype:%d on MI:%d\n", s, id);
}
RenderBuffer::StartStoring(6, 3, &iptr, &vptr);
RwIm3DVertexSetRGBA(&vptr[0], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[1], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[2], r, g, b, 255);
RwIm3DVertexSetU(&vptr[0], 0.0f);
RwIm3DVertexSetV(&vptr[0], 0.0f);
RwIm3DVertexSetU(&vptr[1], 0.0f);
RwIm3DVertexSetV(&vptr[1], 1.0f);
RwIm3DVertexSetU(&vptr[2], 1.0f);
RwIm3DVertexSetV(&vptr[2], 1.0f);
RwIm3DVertexSetPos(&vptr[0], verts[0].x, verts[0].y, verts[0].z);
RwIm3DVertexSetPos(&vptr[1], verts[1].x, verts[1].y, verts[1].z);
RwIm3DVertexSetPos(&vptr[2], verts[2].x, verts[2].y, verts[2].z);
iptr[0] = 0; iptr[1] = 1; iptr[2] = 2;
iptr[3] = 0; iptr[4] = 2; iptr[5] = 1;
RenderBuffer::StopStoring();
}
for(i = 0; i < colModel.numBoxes; i++){
min = colModel.boxes[i].min;
max = colModel.boxes[i].max;
verts[0] = mat * CVector(min.x, min.y, min.z);
verts[1] = mat * CVector(min.x, min.y, max.z);
verts[2] = mat * CVector(min.x, max.y, min.z);
verts[3] = mat * CVector(min.x, max.y, max.z);
verts[4] = mat * CVector(max.x, min.y, min.z);
verts[5] = mat * CVector(max.x, min.y, max.z);
verts[6] = mat * CVector(max.x, max.y, min.z);
verts[7] = mat * CVector(max.x, max.y, max.z);
s = colModel.boxes[i].surface;
f = (s & 0xF)/32.0f + 0.5f;
switch(CSurfaceTable::GetAdhesionGroup(s)){
case ADHESIVE_RUBBER:
r = f * 255.0f;
g = 0;
b = 0;
break;
case ADHESIVE_HARD:
r = f*255.0f;
g = f*255.0f;
b = f*128.0f;
break;
case ADHESIVE_ROAD:
r = f*128.0f;
g = f*128.0f;
b = f*128.0f;
break;
case ADHESIVE_LOOSE:
r = 0;
g = f * 255.0f;
b = 0;
break;
case ADHESIVE_WET:
r = 0;
g = 0;
b = f * 255.0f;
break;
default:
// this doesn't make much sense
r *= f;
g *= f;
b *= f;
}
// TODO: make some surface types flicker?
//if(s != gDbgSurf) continue;
RenderBuffer::StartStoring(36, 8, &iptr, &vptr);
RwIm3DVertexSetRGBA(&vptr[0], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[1], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[2], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[3], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[4], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[5], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[6], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[7], r, g, b, 255);
RwIm3DVertexSetU(&vptr[0], 0.0f);
RwIm3DVertexSetV(&vptr[0], 0.0f);
RwIm3DVertexSetU(&vptr[1], 0.0f);
RwIm3DVertexSetV(&vptr[1], 1.0f);
RwIm3DVertexSetU(&vptr[2], 1.0f);
RwIm3DVertexSetV(&vptr[2], 1.0f);
RwIm3DVertexSetU(&vptr[3], 0.0f);
RwIm3DVertexSetV(&vptr[3], 0.0f);
RwIm3DVertexSetU(&vptr[4], 0.0f);
RwIm3DVertexSetV(&vptr[4], 1.0f);
RwIm3DVertexSetU(&vptr[5], 1.0f);
RwIm3DVertexSetV(&vptr[5], 1.0f);
RwIm3DVertexSetU(&vptr[6], 0.0f);
RwIm3DVertexSetV(&vptr[6], 1.0f);
RwIm3DVertexSetU(&vptr[7], 1.0f);
RwIm3DVertexSetV(&vptr[7], 1.0f);
RwIm3DVertexSetPos(&vptr[0], verts[0].x, verts[0].y, verts[0].z);
RwIm3DVertexSetPos(&vptr[1], verts[1].x, verts[1].y, verts[1].z);
RwIm3DVertexSetPos(&vptr[2], verts[2].x, verts[2].y, verts[2].z);
RwIm3DVertexSetPos(&vptr[3], verts[3].x, verts[3].y, verts[3].z);
RwIm3DVertexSetPos(&vptr[4], verts[4].x, verts[4].y, verts[4].z);
RwIm3DVertexSetPos(&vptr[5], verts[5].x, verts[5].y, verts[5].z);
RwIm3DVertexSetPos(&vptr[6], verts[6].x, verts[6].y, verts[6].z);
RwIm3DVertexSetPos(&vptr[7], verts[7].x, verts[7].y, verts[7].z);
iptr[0] = 0; iptr[1] = 1; iptr[2] = 2;
iptr[3] = 1; iptr[4] = 3; iptr[5] = 2;
iptr[6] = 1; iptr[7] = 5; iptr[8] = 7;
iptr[9] = 1; iptr[10] = 7; iptr[11] = 3;
iptr[12] = 2; iptr[13] = 3; iptr[14] = 7;
iptr[15] = 2; iptr[16] = 7; iptr[17] = 6;
iptr[18] = 0; iptr[19] = 5; iptr[20] = 1;
iptr[21] = 0; iptr[22] = 4; iptr[23] = 5;
iptr[24] = 0; iptr[25] = 2; iptr[26] = 4;
iptr[27] = 2; iptr[28] = 6; iptr[29] = 4;
iptr[30] = 4; iptr[31] = 6; iptr[32] = 7;
iptr[33] = 4; iptr[34] = 7; iptr[35] = 5;
RenderBuffer::StopStoring();
}
RenderBuffer::RenderStuffInBuffer();
RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA);
RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA);
RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)FALSE);
RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATEZTESTENABLE, (void*)TRUE);
}
/*
* ColModel code
*/
void
CColSphere::Set(float radius, const CVector &center, uint8 surf, uint8 piece)
{
this->radius = radius;
this->center = center;
this->surface = surf;
this->piece = piece;
}
void
CColBox::Set(const CVector &min, const CVector &max, uint8 surf, uint8 piece)
{
this->min = min;
this->max = max;
this->surface = surf;
this->piece = piece;
}
void
CColLine::Set(const CVector &p0, const CVector &p1)
{
this->p0 = p0;
this->p1 = p1;
}
void
CColTriangle::Set(const CVector *, int a, int b, int c, uint8 surf, uint8 piece)
{
this->a = a;
this->b = b;
this->c = c;
this->surface = surf;
}
void
CColTrianglePlane::Set(const CVector *v, CColTriangle &tri)
{
const CVector &va = v[tri.a];
const CVector &vb = v[tri.b];
const CVector &vc = v[tri.c];
normal = CrossProduct(vc-va, vb-va);
normal.Normalise();
dist = DotProduct(normal, va);
CVector an(fabs(normal.x), fabs(normal.y), fabs(normal.z));
// find out largest component and its direction
if(an.x > an.y && an.x > an.z)
dir = normal.x < 0.0f ? DIR_X_NEG : DIR_X_POS;
else if(an.y > an.z)
dir = normal.y < 0.0f ? DIR_Y_NEG : DIR_Y_POS;
else
dir = normal.z < 0.0f ? DIR_Z_NEG : DIR_Z_POS;
}
CColModel::CColModel(void)
{
numSpheres = 0;
spheres = nil;
numLines = 0;
lines = nil;
numBoxes = 0;
boxes = nil;
numTriangles = 0;
vertices = nil;
triangles = nil;
trianglePlanes = nil;
level = CGame::currLevel;
ownsCollisionVolumes = true;
}
CColModel::~CColModel(void)
{
RemoveCollisionVolumes();
RemoveTrianglePlanes();
}
void
CColModel::RemoveCollisionVolumes(void)
{
if(ownsCollisionVolumes){
RwFree(spheres);
RwFree(lines);
RwFree(boxes);
RwFree(vertices);
RwFree(triangles);
}
numSpheres = 0;
numLines = 0;
numBoxes = 0;
numTriangles = 0;
spheres = nil;
lines = nil;
boxes = nil;
vertices = nil;
triangles = nil;
}
void
CColModel::CalculateTrianglePlanes(void)
{
// HACK: allocate space for one more element to stuff the link pointer into
trianglePlanes = (CColTrianglePlane*)RwMalloc(sizeof(CColTrianglePlane) * (numTriangles+1));
for(int i = 0; i < numTriangles; i++)
trianglePlanes[i].Set(vertices, triangles[i]);
}
void
CColModel::RemoveTrianglePlanes(void)
{
RwFree(trianglePlanes);
trianglePlanes = nil;
}
void
CColModel::SetLinkPtr(CLink<CColModel*> *lptr)
{
assert(trianglePlanes);
*(CLink<CColModel*>**)ALIGNPTR(&trianglePlanes[numTriangles]) = lptr;
}
CLink<CColModel*>*
CColModel::GetLinkPtr(void)
{
assert(trianglePlanes);
return *(CLink<CColModel*>**)ALIGNPTR(&trianglePlanes[numTriangles]);
}
void
CColModel::GetTrianglePoint(CVector &v, int i) const
{
v = vertices[i];
}
CColModel&
CColModel::operator=(const CColModel &other)
{
int i;
int numVerts;
assert(0);
boundingSphere = other.boundingSphere;
boundingBox = other.boundingBox;
// copy spheres
if(other.numSpheres){
if(numSpheres != other.numSpheres){
numSpheres = other.numSpheres;
if(spheres)
RwFree(spheres);
spheres = (CColSphere*)RwMalloc(numSpheres*sizeof(CColSphere));
}
for(i = 0; i < numSpheres; i++)
spheres[i] = other.spheres[i];
}else{
numSpheres = 0;
if(spheres)
RwFree(spheres);
spheres = nil;
}
// copy lines
if(other.numLines){
if(numLines != other.numLines){
numLines = other.numLines;
if(lines)
RwFree(lines);
lines = (CColLine*)RwMalloc(numLines*sizeof(CColLine));
}
for(i = 0; i < numLines; i++)
lines[i] = other.lines[i];
}else{
numLines = 0;
if(lines)
RwFree(lines);
lines = nil;
}
// copy boxes
if(other.numBoxes){
if(numBoxes != other.numBoxes){
numBoxes = other.numBoxes;
if(boxes)
RwFree(boxes);
boxes = (CColBox*)RwMalloc(numBoxes*sizeof(CColBox));
}
for(i = 0; i < numBoxes; i++)
boxes[i] = other.boxes[i];
}else{
numBoxes = 0;
if(boxes)
RwFree(boxes);
boxes = nil;
}
// copy mesh
if(other.numTriangles){
// copy vertices
numVerts = 0;
for(i = 0; i < other.numTriangles; i++){
if(other.triangles[i].a > numVerts)
other.triangles[i].a = numVerts;
if(other.triangles[i].b > numVerts)
other.triangles[i].b = numVerts;
if(other.triangles[i].c > numVerts)
other.triangles[i].c = numVerts;
}
numVerts++;
if(vertices)
RwFree(vertices);
if(numVerts){
vertices = (CVector*)RwMalloc(numVerts*sizeof(CVector));
for(i = 0; i < numVerts; i++)
vertices[i] = other.vertices[i];
}
// copy triangles
if(numTriangles != other.numTriangles){
numTriangles = other.numTriangles;
if(triangles)
RwFree(triangles);
triangles = (CColTriangle*)RwMalloc(numTriangles*sizeof(CColTriangle));
}
for(i = 0; i < numTriangles; i++)
triangles[i] = other.triangles[i];
}else{
numTriangles = 0;
if(triangles)
RwFree(triangles);
triangles = nil;
if(vertices)
RwFree(vertices);
vertices = nil;
}
return *this;
}
STARTPATCHES
InjectHook(0x4B9C30, (CMatrix& (*)(const CMatrix &src, CMatrix &dst))Invert, PATCH_JUMP);
InjectHook(0x40B380, CCollision::Init, PATCH_JUMP);
InjectHook(0x40B3A0, CCollision::Shutdown, PATCH_JUMP);
InjectHook(0x40B3B0, CCollision::Update, PATCH_JUMP);
InjectHook(0x40B5B0, CCollision::LoadCollisionWhenINeedIt, PATCH_JUMP);
InjectHook(0x40B900, CCollision::SortOutCollisionAfterLoad, PATCH_JUMP);
InjectHook(0x40BB70, CCollision::TestSphereBox, PATCH_JUMP);
InjectHook(0x40E130, CCollision::TestLineBox, PATCH_JUMP);
InjectHook(0x40E5C0, CCollision::TestVerticalLineBox, PATCH_JUMP);
InjectHook(0x40EC10, CCollision::TestLineTriangle, PATCH_JUMP);
InjectHook(0x40DAA0, CCollision::TestLineSphere, PATCH_JUMP);
InjectHook(0x40C580, CCollision::TestSphereTriangle, PATCH_JUMP);
InjectHook(0x40F720, CCollision::TestLineOfSight, PATCH_JUMP);
InjectHook(0x40B9F0, CCollision::ProcessSphereSphere, PATCH_JUMP);
InjectHook(0x40BC00, CCollision::ProcessSphereBox, PATCH_JUMP);
InjectHook(0x40E670, CCollision::ProcessLineBox, PATCH_JUMP);
InjectHook(0x40DE80, CCollision::ProcessLineSphere, PATCH_JUMP);
InjectHook(0x40FB50, CCollision::ProcessVerticalLineTriangle, PATCH_JUMP);
InjectHook(0x40F140, CCollision::ProcessLineTriangle, PATCH_JUMP);
InjectHook(0x40CE30, CCollision::ProcessSphereTriangle, PATCH_JUMP);
InjectHook(0x40F910, CCollision::ProcessLineOfSight, PATCH_JUMP);
InjectHook(0x410120, CCollision::ProcessVerticalLine, PATCH_JUMP);
InjectHook(0x410BE0, CCollision::ProcessColModels, PATCH_JUMP);
InjectHook(0x40B960, CCollision::CalculateTrianglePlanes, PATCH_JUMP);
InjectHook(0x411640, &CLink<CColModel*>::Remove, PATCH_JUMP);
InjectHook(0x411620, &CLink<CColModel*>::Insert, PATCH_JUMP);
InjectHook(0x4115C0, &CLinkList<CColModel*>::Insert, PATCH_JUMP);
InjectHook(0x411600, &CLinkList<CColModel*>::Remove, PATCH_JUMP);
// InjectHook(0x411530, &CLinkList<CColModel*>::Init, PATCH_JUMP);
InjectHook(0x411E40, (void (CColSphere::*)(float, const CVector&, uint8, uint8))&CColSphere::Set, PATCH_JUMP);
InjectHook(0x40B2A0, &CColBox::Set, PATCH_JUMP);
InjectHook(0x40B320, &CColLine::ctor, PATCH_JUMP);
InjectHook(0x40B350, &CColLine::Set, PATCH_JUMP);
InjectHook(0x411E70, &CColTriangle::Set, PATCH_JUMP);
InjectHook(0x411EA0, &CColTrianglePlane::Set, PATCH_JUMP);
InjectHook(0x412140, &CColTrianglePlane::GetNormal, PATCH_JUMP);
InjectHook(0x411680, &CColModel::ctor, PATCH_JUMP);
InjectHook(0x4116E0, &CColModel::dtor, PATCH_JUMP);
InjectHook(0x411D80, &CColModel::RemoveCollisionVolumes, PATCH_JUMP);
InjectHook(0x411CB0, &CColModel::CalculateTrianglePlanes, PATCH_JUMP);
InjectHook(0x411D10, &CColModel::RemoveTrianglePlanes, PATCH_JUMP);
InjectHook(0x411D40, &CColModel::SetLinkPtr, PATCH_JUMP);
InjectHook(0x411D60, &CColModel::GetLinkPtr, PATCH_JUMP);
ENDPATCHES