twitter-algorithm-ml/optimizers/config.py

83 lines
2.4 KiB
Python
Raw Permalink Normal View History

"""Optimization configurations for models."""
import typing
import tml.core.config as base_config
import pydantic
class PiecewiseConstant(base_config.BaseConfig):
learning_rate_boundaries: typing.List[int] = pydantic.Field(None)
learning_rate_values: typing.List[float] = pydantic.Field(None)
class LinearRampToConstant(base_config.BaseConfig):
learning_rate: float
num_ramp_steps: pydantic.PositiveInt = pydantic.Field(
description="Number of steps to ramp this up from zero."
)
class LinearRampToCosine(base_config.BaseConfig):
learning_rate: float
final_learning_rate: float
num_ramp_steps: pydantic.PositiveInt = pydantic.Field(
description="Number of steps to ramp this up from zero."
)
final_num_steps: pydantic.PositiveInt = pydantic.Field(
description="Final number of steps where decay stops."
)
class LearningRate(base_config.BaseConfig):
constant: float = pydantic.Field(None, one_of="lr")
linear_ramp_to_cosine: LinearRampToCosine = pydantic.Field(None, one_of="lr")
linear_ramp_to_constant: LinearRampToConstant = pydantic.Field(None, one_of="lr")
piecewise_constant: PiecewiseConstant = pydantic.Field(None, one_of="lr")
class OptimizerAlgorithmConfig(base_config.BaseConfig):
"""Base class for optimizer configurations."""
lr: float
...
class AdamConfig(OptimizerAlgorithmConfig):
# see https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam
lr: float
betas: typing.Tuple[float, float] = [0.9, 0.999]
eps: float = 1e-7 # Numerical stability in denominator.
class SgdConfig(OptimizerAlgorithmConfig):
lr: float
momentum: float = 0.0
class AdagradConfig(OptimizerAlgorithmConfig):
lr: float
eps: float = 0
class OptimizerConfig(base_config.BaseConfig):
learning_rate: LearningRate = pydantic.Field(
None,
description="Constant learning rates",
)
adam: AdamConfig = pydantic.Field(None, one_of="optimizer")
sgd: SgdConfig = pydantic.Field(None, one_of="optimizer")
adagrad: AdagradConfig = pydantic.Field(None, one_of="optimizer")
def get_optimizer_algorithm_config(optimizer_config: OptimizerConfig):
if optimizer_config.adam is not None:
return optimizer_config.adam
elif optimizer_config.sgd is not None:
return optimizer_config.sgd
elif optimizer_config.adagrad is not None:
return optimizer_config.adagrad
else:
raise ValueError(f"No optimizer selected in optimizer_config, passed {optimizer_config}")