twitter-algorithm-ml/projects/home/recap/model/mlp.py

59 lines
1.7 KiB
Python

"""MLP feed forward stack in torch."""
from tml.projects.home.recap.model.config import MlpConfig
import torch
from absl import logging
def _init_weights(module):
if isinstance(module, torch.nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
torch.nn.init.constant_(module.bias, 0)
class Mlp(torch.nn.Module):
def __init__(self, in_features: int, mlp_config: MlpConfig):
super().__init__()
self._mlp_config = mlp_config
input_size = in_features
layer_sizes = mlp_config.layer_sizes
modules = []
for layer_size in layer_sizes[:-1]:
modules.append(torch.nn.Linear(input_size, layer_size, bias=True))
if mlp_config.batch_norm:
modules.append(
torch.nn.BatchNorm1d(
layer_size, affine=mlp_config.batch_norm.affine, momentum=mlp_config.batch_norm.momentum
)
)
modules.append(torch.nn.ReLU())
if mlp_config.dropout:
modules.append(torch.nn.Dropout(mlp_config.dropout.rate))
input_size = layer_size
modules.append(torch.nn.Linear(input_size, layer_sizes[-1], bias=True))
if mlp_config.final_layer_activation:
modules.append(torch.nn.ReLU())
self.layers = torch.nn.ModuleList(modules)
self.layers.apply(_init_weights)
def forward(self, x: torch.Tensor) -> torch.Tensor:
net = x
for i, layer in enumerate(self.layers):
net = layer(net)
if i == 1: # Share the first (widest?) set of activations for other applications.
shared_layer = net
return {"output": net, "shared_layer": shared_layer}
@property
def shared_size(self):
return self._mlp_config.layer_sizes[-1]
@property
def out_features(self):
return self._mlp_config.layer_sizes[-1]