mirror of
https://github.com/twitter/the-algorithm.git
synced 2024-12-22 10:25:29 +00:00
ref(navi/dr_transform): fix clippy & formatting issues
This commit is contained in:
parent
ec83d01dca
commit
2dbdfe173c
|
@ -44,6 +44,5 @@ pub struct RenamedFeatures {
|
|||
}
|
||||
|
||||
pub fn parse(json_str: &str) -> Result<AllConfig, Error> {
|
||||
let all_config: AllConfig = serde_json::from_str(json_str)?;
|
||||
return std::result::Result::Ok(all_config);
|
||||
serde_json::from_str(json_str)
|
||||
}
|
||||
|
|
|
@ -16,8 +16,7 @@ use segdense::util;
|
|||
use thrift::protocol::{TBinaryInputProtocol, TSerializable};
|
||||
use thrift::transport::TBufferChannel;
|
||||
|
||||
use crate::{all_config};
|
||||
use crate::all_config::AllConfig;
|
||||
use crate::{all_config, all_config::AllConfig};
|
||||
|
||||
pub fn log_feature_match(
|
||||
dr: &DataRecord,
|
||||
|
@ -27,26 +26,22 @@ pub fn log_feature_match(
|
|||
// Note the following algorithm matches features from config using linear search.
|
||||
// Also the record source is MinDataRecord. This includes only binary and continous features for now.
|
||||
|
||||
for (feature_id, feature_value) in dr.continuous_features.as_ref().unwrap().into_iter() {
|
||||
for (feature_id, feature_value) in dr.continuous_features.as_ref().unwrap() {
|
||||
debug!(
|
||||
"{} - Continous Datarecord => Feature ID: {}, Feature value: {}",
|
||||
dr_type, feature_id, feature_value
|
||||
"{dr_type} - Continuous Datarecord => Feature ID: {feature_id}, Feature value: {feature_value}"
|
||||
);
|
||||
for input_feature in &seg_dense_config.cont.input_features {
|
||||
if input_feature.feature_id == *feature_id {
|
||||
debug!("Matching input feature: {:?}", input_feature)
|
||||
debug!("Matching input feature: {input_feature:?}")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for feature_id in dr.binary_features.as_ref().unwrap().into_iter() {
|
||||
debug!(
|
||||
"{} - Binary Datarecord => Feature ID: {}",
|
||||
dr_type, feature_id
|
||||
);
|
||||
for feature_id in dr.binary_features.as_ref().unwrap() {
|
||||
debug!("{dr_type} - Binary Datarecord => Feature ID: {feature_id}");
|
||||
for input_feature in &seg_dense_config.binary.input_features {
|
||||
if input_feature.feature_id == *feature_id {
|
||||
debug!("Found input feature: {:?}", input_feature)
|
||||
debug!("Found input feature: {input_feature:?}")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -96,15 +91,13 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
reporting_feature_ids: Vec<(i64, &str)>,
|
||||
register_metric_fn: Option<impl Fn(&HistogramVec)>,
|
||||
) -> BatchPredictionRequestToTorchTensorConverter {
|
||||
let all_config_path = format!("{}/{}/all_config.json", model_dir, model_version);
|
||||
let seg_dense_config_path = format!(
|
||||
"{}/{}/segdense_transform_spec_home_recap_2022.json",
|
||||
model_dir, model_version
|
||||
);
|
||||
let all_config_path = format!("{model_dir}/{model_version}/all_config.json");
|
||||
let seg_dense_config_path =
|
||||
format!("{model_dir}/{model_version}/segdense_transform_spec_home_recap_2022.json");
|
||||
let seg_dense_config = util::load_config(&seg_dense_config_path);
|
||||
let all_config = all_config::parse(
|
||||
&fs::read_to_string(&all_config_path)
|
||||
.unwrap_or_else(|error| panic!("error loading all_config.json - {}", error)),
|
||||
.unwrap_or_else(|error| panic!("error loading all_config.json - {error}")),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
|
@ -138,11 +131,11 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
let (discrete_feature_metrics, continuous_feature_metrics) = METRICS.get_or_init(|| {
|
||||
let discrete = HistogramVec::new(
|
||||
HistogramOpts::new(":navi:feature_id:discrete", "Discrete Feature ID values")
|
||||
.buckets(Vec::from(&[
|
||||
0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0,
|
||||
.buckets(Vec::from([
|
||||
0.0f64, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0,
|
||||
120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0,
|
||||
300.0, 500.0, 1000.0, 10000.0, 100000.0,
|
||||
] as &'static [f64])),
|
||||
])),
|
||||
&["feature_id"],
|
||||
)
|
||||
.expect("metric cannot be created");
|
||||
|
@ -151,18 +144,18 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
":navi:feature_id:continuous",
|
||||
"continuous Feature ID values",
|
||||
)
|
||||
.buckets(Vec::from(&[
|
||||
0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0, 120.0,
|
||||
130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0, 300.0, 500.0,
|
||||
1000.0, 10000.0, 100000.0,
|
||||
] as &'static [f64])),
|
||||
.buckets(Vec::from([
|
||||
0.0f64, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0,
|
||||
120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0, 300.0,
|
||||
500.0, 1000.0, 10000.0, 100000.0,
|
||||
])),
|
||||
&["feature_id"],
|
||||
)
|
||||
.expect("metric cannot be created");
|
||||
register_metric_fn.map(|r| {
|
||||
if let Some(r) = register_metric_fn {
|
||||
r(&discrete);
|
||||
r(&continuous);
|
||||
});
|
||||
}
|
||||
(discrete, continuous)
|
||||
});
|
||||
|
||||
|
@ -171,16 +164,13 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
|
||||
for (feature_id, feature_type) in reporting_feature_ids.iter() {
|
||||
match *feature_type {
|
||||
"discrete" => discrete_features_to_report.insert(feature_id.clone()),
|
||||
"continuous" => continuous_features_to_report.insert(feature_id.clone()),
|
||||
_ => panic!(
|
||||
"Invalid feature type {} for reporting metrics!",
|
||||
feature_type
|
||||
),
|
||||
"discrete" => discrete_features_to_report.insert(*feature_id),
|
||||
"continuous" => continuous_features_to_report.insert(*feature_id),
|
||||
_ => panic!("Invalid feature type {feature_type} for reporting metrics!"),
|
||||
};
|
||||
}
|
||||
|
||||
return BatchPredictionRequestToTorchTensorConverter {
|
||||
BatchPredictionRequestToTorchTensorConverter {
|
||||
all_config,
|
||||
seg_dense_config,
|
||||
all_config_path,
|
||||
|
@ -193,7 +183,7 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
continuous_features_to_report,
|
||||
discrete_feature_metrics,
|
||||
continuous_feature_metrics,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
fn get_feature_id(feature_name: &str, seg_dense_config: &Root) -> i64 {
|
||||
|
@ -203,7 +193,7 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
return feature.feature_id;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
-1
|
||||
}
|
||||
|
||||
fn parse_batch_prediction_request(bytes: Vec<u8>) -> BatchPredictionRequest {
|
||||
|
@ -211,7 +201,7 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
let mut bc = TBufferChannel::with_capacity(bytes.len(), 0);
|
||||
bc.set_readable_bytes(&bytes);
|
||||
let mut protocol = TBinaryInputProtocol::new(bc, true);
|
||||
return BatchPredictionRequest::read_from_in_protocol(&mut protocol).unwrap();
|
||||
BatchPredictionRequest::read_from_in_protocol(&mut protocol).unwrap()
|
||||
}
|
||||
|
||||
fn get_embedding_tensors(
|
||||
|
@ -228,45 +218,43 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
let mut working_set = vec![0 as f32; total_size];
|
||||
let mut bpr_start = 0;
|
||||
for (bpr, &bpr_end) in bprs.iter().zip(batch_size) {
|
||||
if bpr.common_features.is_some() {
|
||||
if bpr.common_features.as_ref().unwrap().tensors.is_some() {
|
||||
if bpr
|
||||
.common_features
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.tensors
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.contains_key(&feature_id)
|
||||
if bpr.common_features.is_some()
|
||||
&& bpr.common_features.as_ref().unwrap().tensors.is_some()
|
||||
&& bpr
|
||||
.common_features
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.tensors
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.contains_key(&feature_id)
|
||||
{
|
||||
let source_tensor = bpr
|
||||
.common_features
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.tensors
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.get(&feature_id)
|
||||
.unwrap();
|
||||
let tensor = match source_tensor {
|
||||
GeneralTensor::FloatTensor(float_tensor) =>
|
||||
//Tensor::of_slice(
|
||||
{
|
||||
let source_tensor = bpr
|
||||
.common_features
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.tensors
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.get(&feature_id)
|
||||
.unwrap();
|
||||
let tensor = match source_tensor {
|
||||
GeneralTensor::FloatTensor(float_tensor) =>
|
||||
//Tensor::of_slice(
|
||||
{
|
||||
float_tensor
|
||||
.floats
|
||||
.iter()
|
||||
.map(|x| x.into_inner() as f32)
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
_ => vec![0 as f32; cols],
|
||||
};
|
||||
float_tensor
|
||||
.floats
|
||||
.iter()
|
||||
.map(|x| x.into_inner() as f32)
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
_ => vec![0 as f32; cols],
|
||||
};
|
||||
|
||||
// since the tensor is found in common feature, add it in all batches
|
||||
for row in bpr_start..bpr_end {
|
||||
for col in 0..cols {
|
||||
working_set[row * cols + col] = tensor[col];
|
||||
}
|
||||
}
|
||||
// since the tensor is found in common feature, add it in all batches
|
||||
for row in bpr_start..bpr_end {
|
||||
for col in 0..cols {
|
||||
working_set[row * cols + col] = tensor[col];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -300,7 +288,7 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
}
|
||||
bpr_start = bpr_end;
|
||||
}
|
||||
return Array2::<f32>::from_shape_vec([rows, cols], working_set).unwrap();
|
||||
Array2::<f32>::from_shape_vec([rows, cols], working_set).unwrap()
|
||||
}
|
||||
|
||||
// Todo : Refactor, create a generic version with different type and field accessors
|
||||
|
@ -310,9 +298,9 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
// (INT64 --> INT64, DataRecord.discrete_feature)
|
||||
fn get_continuous(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
||||
// These need to be part of model schema
|
||||
let rows: usize = batch_ends[batch_ends.len() - 1];
|
||||
let cols: usize = 5293;
|
||||
let full_size: usize = (rows * cols).try_into().unwrap();
|
||||
let rows = batch_ends[batch_ends.len() - 1];
|
||||
let cols = 5293;
|
||||
let full_size = rows * cols;
|
||||
let default_val = f32::NAN;
|
||||
|
||||
let mut tensor = vec![default_val; full_size];
|
||||
|
@ -337,55 +325,48 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
.unwrap();
|
||||
|
||||
for feature in common_features {
|
||||
match self.feature_mapper.get(feature.0) {
|
||||
Some(f_info) => {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
if idx < cols {
|
||||
// Set value in each row
|
||||
for r in bpr_start..bpr_end {
|
||||
let flat_index: usize = (r * cols + idx).try_into().unwrap();
|
||||
tensor[flat_index] = feature.1.into_inner() as f32;
|
||||
}
|
||||
if let Some(f_info) = self.feature_mapper.get(feature.0) {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
if idx < cols {
|
||||
// Set value in each row
|
||||
for r in bpr_start..bpr_end {
|
||||
let flat_index = r * cols + idx;
|
||||
tensor[flat_index] = feature.1.into_inner() as f32;
|
||||
}
|
||||
}
|
||||
None => (),
|
||||
}
|
||||
if self.continuous_features_to_report.contains(feature.0) {
|
||||
self.continuous_feature_metrics
|
||||
.with_label_values(&[feature.0.to_string().as_str()])
|
||||
.observe(feature.1.into_inner() as f64)
|
||||
.observe(feature.1.into_inner())
|
||||
} else if self.discrete_features_to_report.contains(feature.0) {
|
||||
self.discrete_feature_metrics
|
||||
.with_label_values(&[feature.0.to_string().as_str()])
|
||||
.observe(feature.1.into_inner() as f64)
|
||||
.observe(feature.1.into_inner())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Process the batch of datarecords
|
||||
for r in bpr_start..bpr_end {
|
||||
let dr: &DataRecord =
|
||||
&bpr.individual_features_list[usize::try_from(r - bpr_start).unwrap()];
|
||||
let dr: &DataRecord = &bpr.individual_features_list[r - bpr_start];
|
||||
if dr.continuous_features.is_some() {
|
||||
for feature in dr.continuous_features.as_ref().unwrap() {
|
||||
match self.feature_mapper.get(&feature.0) {
|
||||
Some(f_info) => {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
let flat_index: usize = (r * cols + idx).try_into().unwrap();
|
||||
if flat_index < tensor.len() && idx < cols {
|
||||
tensor[flat_index] = feature.1.into_inner() as f32;
|
||||
}
|
||||
if let Some(f_info) = self.feature_mapper.get(feature.0) {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
let flat_index = r * cols + idx;
|
||||
if flat_index < tensor.len() && idx < cols {
|
||||
tensor[flat_index] = feature.1.into_inner() as f32;
|
||||
}
|
||||
None => (),
|
||||
}
|
||||
if self.continuous_features_to_report.contains(feature.0) {
|
||||
self.continuous_feature_metrics
|
||||
.with_label_values(&[feature.0.to_string().as_str()])
|
||||
.observe(feature.1.into_inner() as f64)
|
||||
.observe(feature.1.into_inner())
|
||||
} else if self.discrete_features_to_report.contains(feature.0) {
|
||||
self.discrete_feature_metrics
|
||||
.with_label_values(&[feature.0.to_string().as_str()])
|
||||
.observe(feature.1.into_inner() as f64)
|
||||
.observe(feature.1.into_inner())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -393,22 +374,19 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
bpr_start = bpr_end;
|
||||
}
|
||||
|
||||
return InputTensor::FloatTensor(
|
||||
Array2::<f32>::from_shape_vec(
|
||||
[rows.try_into().unwrap(), cols.try_into().unwrap()],
|
||||
tensor,
|
||||
)
|
||||
.unwrap()
|
||||
.into_dyn(),
|
||||
);
|
||||
InputTensor::FloatTensor(
|
||||
Array2::<f32>::from_shape_vec([rows, cols], tensor)
|
||||
.unwrap()
|
||||
.into_dyn(),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_binary(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
||||
// These need to be part of model schema
|
||||
let rows: usize = batch_ends[batch_ends.len() - 1];
|
||||
let cols: usize = 149;
|
||||
let full_size: usize = (rows * cols).try_into().unwrap();
|
||||
let default_val: i64 = 0;
|
||||
let rows = batch_ends[batch_ends.len() - 1];
|
||||
let cols = 149;
|
||||
let full_size = rows * cols;
|
||||
let default_val = 0;
|
||||
|
||||
let mut v = vec![default_val; full_size];
|
||||
|
||||
|
@ -432,55 +410,48 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
.unwrap();
|
||||
|
||||
for feature in common_features {
|
||||
match self.feature_mapper.get(feature) {
|
||||
Some(f_info) => {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
if idx < cols {
|
||||
// Set value in each row
|
||||
for r in bpr_start..bpr_end {
|
||||
let flat_index: usize = (r * cols + idx).try_into().unwrap();
|
||||
v[flat_index] = 1;
|
||||
}
|
||||
if let Some(f_info) = self.feature_mapper.get(feature) {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
if idx < cols {
|
||||
// Set value in each row
|
||||
for r in bpr_start..bpr_end {
|
||||
let flat_index = r * cols + idx;
|
||||
v[flat_index] = 1;
|
||||
}
|
||||
}
|
||||
None => (),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Process the batch of datarecords
|
||||
for r in bpr_start..bpr_end {
|
||||
let dr: &DataRecord =
|
||||
&bpr.individual_features_list[usize::try_from(r - bpr_start).unwrap()];
|
||||
let dr: &DataRecord = &bpr.individual_features_list[r - bpr_start];
|
||||
if dr.binary_features.is_some() {
|
||||
for feature in dr.binary_features.as_ref().unwrap() {
|
||||
match self.feature_mapper.get(&feature) {
|
||||
Some(f_info) => {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
let flat_index: usize = (r * cols + idx).try_into().unwrap();
|
||||
v[flat_index] = 1;
|
||||
}
|
||||
None => (),
|
||||
if let Some(f_info) = self.feature_mapper.get(feature) {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
let flat_index = r * cols + idx;
|
||||
v[flat_index] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
bpr_start = bpr_end;
|
||||
}
|
||||
return InputTensor::Int64Tensor(
|
||||
Array2::<i64>::from_shape_vec([rows.try_into().unwrap(), cols.try_into().unwrap()], v)
|
||||
InputTensor::Int64Tensor(
|
||||
Array2::<i64>::from_shape_vec([rows, cols], v)
|
||||
.unwrap()
|
||||
.into_dyn(),
|
||||
);
|
||||
)
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_discrete(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
||||
// These need to be part of model schema
|
||||
let rows: usize = batch_ends[batch_ends.len() - 1];
|
||||
let cols: usize = 320;
|
||||
let full_size: usize = (rows * cols).try_into().unwrap();
|
||||
let default_val: i64 = 0;
|
||||
let rows = batch_ends[batch_ends.len() - 1];
|
||||
let cols = 320;
|
||||
let full_size = rows * cols;
|
||||
let default_val = 0;
|
||||
|
||||
let mut v = vec![default_val; full_size];
|
||||
|
||||
|
@ -504,18 +475,15 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
.unwrap();
|
||||
|
||||
for feature in common_features {
|
||||
match self.feature_mapper.get(feature.0) {
|
||||
Some(f_info) => {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
if idx < cols {
|
||||
// Set value in each row
|
||||
for r in bpr_start..bpr_end {
|
||||
let flat_index: usize = (r * cols + idx).try_into().unwrap();
|
||||
v[flat_index] = *feature.1;
|
||||
}
|
||||
if let Some(f_info) = self.feature_mapper.get(feature.0) {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
if idx < cols {
|
||||
// Set value in each row
|
||||
for r in bpr_start..bpr_end {
|
||||
let flat_index = r * cols + idx;
|
||||
v[flat_index] = *feature.1;
|
||||
}
|
||||
}
|
||||
None => (),
|
||||
}
|
||||
if self.discrete_features_to_report.contains(feature.0) {
|
||||
self.discrete_feature_metrics
|
||||
|
@ -527,18 +495,15 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
|
||||
// Process the batch of datarecords
|
||||
for r in bpr_start..bpr_end {
|
||||
let dr: &DataRecord = &bpr.individual_features_list[usize::try_from(r).unwrap()];
|
||||
let dr: &DataRecord = &bpr.individual_features_list[r];
|
||||
if dr.discrete_features.is_some() {
|
||||
for feature in dr.discrete_features.as_ref().unwrap() {
|
||||
match self.feature_mapper.get(&feature.0) {
|
||||
Some(f_info) => {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
let flat_index: usize = (r * cols + idx).try_into().unwrap();
|
||||
if flat_index < v.len() && idx < cols {
|
||||
v[flat_index] = *feature.1;
|
||||
}
|
||||
if let Some(f_info) = self.feature_mapper.get(feature.0) {
|
||||
let idx = f_info.index_within_tensor as usize;
|
||||
let flat_index = r * cols + idx;
|
||||
if flat_index < v.len() && idx < cols {
|
||||
v[flat_index] = *feature.1;
|
||||
}
|
||||
None => (),
|
||||
}
|
||||
if self.discrete_features_to_report.contains(feature.0) {
|
||||
self.discrete_feature_metrics
|
||||
|
@ -550,11 +515,11 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||
}
|
||||
bpr_start = bpr_end;
|
||||
}
|
||||
return InputTensor::Int64Tensor(
|
||||
Array2::<i64>::from_shape_vec([rows.try_into().unwrap(), cols.try_into().unwrap()], v)
|
||||
InputTensor::Int64Tensor(
|
||||
Array2::<i64>::from_shape_vec([rows, cols], v)
|
||||
.unwrap()
|
||||
.into_dyn(),
|
||||
);
|
||||
)
|
||||
}
|
||||
|
||||
fn get_user_embedding(
|
||||
|
@ -604,7 +569,7 @@ impl Converter for BatchPredictionRequestToTorchTensorConverter {
|
|||
.map(|bpr| bpr.individual_features_list.len())
|
||||
.scan(0usize, |acc, e| {
|
||||
//running total
|
||||
*acc = *acc + e;
|
||||
*acc += e;
|
||||
Some(*acc)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
|
|
@ -12,11 +12,11 @@ pub fn load_batch_prediction_request_base64(file_name: &str) -> Vec<Vec<u8>> {
|
|||
for line in io::BufReader::new(file).lines() {
|
||||
match base64::decode(line.unwrap().trim()) {
|
||||
Ok(payload) => result.push(payload),
|
||||
Err(err) => println!("error decoding line {}", err),
|
||||
Err(err) => println!("error decoding line {err}"),
|
||||
}
|
||||
}
|
||||
println!("reslt len: {}", result.len());
|
||||
return result;
|
||||
println!("result len: {}", result.len());
|
||||
return result
|
||||
}
|
||||
pub fn save_to_npy<T: npyz::Serialize + AutoSerialize>(data: &[T], save_to: String) {
|
||||
let mut writer = WriteOptions::new()
|
||||
|
|
Loading…
Reference in a new issue