Uses integer arithmetics in SDL_ResampleAudio

- Avoids precision loss caused by large floating point numbers.
- Adds unit test to test the signal-to-noise ratio and maximum error of resampler.
- Code cleanup

(cherry-picked from commit 20e17559e545c5d3cfe86c1c4772365e70090779)
This commit is contained in:
Qrox 2023-03-09 17:34:51 +08:00 committed by Ozkan Sezer
parent 5e35309913
commit ef347776c2
2 changed files with 149 additions and 33 deletions

View file

@ -181,13 +181,17 @@ static void SDLCALL SDL_ConvertMonoToStereo_SSE(SDL_AudioCVT *cvt, SDL_AudioForm
#include "SDL_audio_resampler_filter.h" #include "SDL_audio_resampler_filter.h"
static int ResamplerPadding(const int inrate, const int outrate) static Sint32 ResamplerPadding(const Sint32 inrate, const Sint32 outrate)
{ {
/* This function uses integer arithmetics to avoid precision loss caused
* by large floating point numbers. Sint32 is needed for the large number
* multiplication. The integers are assumed to be non-negative so that
* division rounds by truncation. */
if (inrate == outrate) { if (inrate == outrate) {
return 0; return 0;
} }
if (inrate > outrate) { if (inrate > outrate) {
return (int)SDL_ceilf(((float)(RESAMPLER_SAMPLES_PER_ZERO_CROSSING * inrate) / ((float)outrate))); return (RESAMPLER_SAMPLES_PER_ZERO_CROSSING * inrate + outrate - 1) / outrate;
} }
return RESAMPLER_SAMPLES_PER_ZERO_CROSSING; return RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
} }
@ -198,65 +202,59 @@ static int SDL_ResampleAudio(const int chans, const int inrate, const int outrat
const float *inbuf, const int inbuflen, const float *inbuf, const int inbuflen,
float *outbuf, const int outbuflen) float *outbuf, const int outbuflen)
{ {
/* !!! FIXME: this produces artifacts if we don't work at double precision, but this turns out to /* This function uses integer arithmetics to avoid precision loss caused
be a big performance hit. Until we can resolve this better, we force this to double * by large floating point numbers. For some operations, Sint32 or Sint64
for amd64 CPUs, which should be able to take the hit for now, vs small embedded * are needed for the large number multiplications. The input integers are
things that might end up in a software fallback here. */ * assumed to be non-negative so that division rounds by truncation and
/* Note that this used to be double, but it looks like we can get by with float in most cases at * modulo is always non-negative. Note that the operator order is important
almost twice the speed on Intel processors, and orders of magnitude more * for these integer divisions. */
on CPUs that need a software fallback for double calculations. */
#if defined(_M_X64) || defined(__x86_64__)
typedef double ResampleFloatType;
#else
typedef float ResampleFloatType;
#endif
const ResampleFloatType finrate = (ResampleFloatType)inrate;
const ResampleFloatType ratio = ((float)outrate) / ((float)inrate);
const int paddinglen = ResamplerPadding(inrate, outrate); const int paddinglen = ResamplerPadding(inrate, outrate);
const int framelen = chans * (int)sizeof(float); const int framelen = chans * (int)sizeof(float);
const int inframes = inbuflen / framelen; const int inframes = inbuflen / framelen;
const int wantedoutframes = (int)(inframes * ratio); /* outbuflen isn't total to write, it's total available. */ /* outbuflen isn't total to write, it's total available. */
const int wantedoutframes = ((Sint64)inframes) * outrate / inrate;
const int maxoutframes = outbuflen / framelen; const int maxoutframes = outbuflen / framelen;
const int outframes = SDL_min(wantedoutframes, maxoutframes); const int outframes = SDL_min(wantedoutframes, maxoutframes);
ResampleFloatType outtime = 0.0f;
float *dst = outbuf; float *dst = outbuf;
int i, j, chan; int i, j, chan;
for (i = 0; i < outframes; i++) { for (i = 0; i < outframes; i++) {
const int srcindex = (int)(outtime * inrate); const int srcindex = ((Sint64)i) * inrate / outrate;
const ResampleFloatType intime = ((ResampleFloatType)srcindex) / finrate; /* Calculating the following way avoids subtraction or modulo of large
const ResampleFloatType innexttime = ((ResampleFloatType)(srcindex + 1)) / finrate; * floats which have low result precision.
const ResampleFloatType indeltatime = innexttime - intime; * interpolation1
const ResampleFloatType interpolation1 = (indeltatime == 0.0f) ? 1.0f : (1.0f - ((innexttime - outtime) / indeltatime)); * = (i / outrate * inrate) - floor(i / outrate * inrate)
const int filterindex1 = (int)(interpolation1 * RESAMPLER_SAMPLES_PER_ZERO_CROSSING); * = mod(i / outrate * inrate, 1)
const ResampleFloatType interpolation2 = 1.0f - interpolation1; * = mod(i * inrate, outrate) / outrate */
const int filterindex2 = (int)(interpolation2 * RESAMPLER_SAMPLES_PER_ZERO_CROSSING); const int srcfraction = ((Sint64)i) * inrate % outrate;
const float interpolation1 = ((float)srcfraction) / ((float)outrate);
const int filterindex1 = ((Sint32)srcfraction) * RESAMPLER_SAMPLES_PER_ZERO_CROSSING / outrate;
const float interpolation2 = 1.0f - interpolation1;
const int filterindex2 = ((Sint32)(outrate - srcfraction)) * RESAMPLER_SAMPLES_PER_ZERO_CROSSING / outrate;
for (chan = 0; chan < chans; chan++) { for (chan = 0; chan < chans; chan++) {
float outsample = 0.0f; float outsample = 0.0f;
/* do this twice to calculate the sample, once for the "left wing" and then same for the right. */ /* do this twice to calculate the sample, once for the "left wing" and then same for the right. */
for (j = 0; (filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) { for (j = 0; (filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) {
const int filt_ind = filterindex1 + j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
const int srcframe = srcindex - j; const int srcframe = srcindex - j;
/* !!! FIXME: we can bubble this conditional out of here by doing a pre loop. */ /* !!! FIXME: we can bubble this conditional out of here by doing a pre loop. */
const float insample = (srcframe < 0) ? lpadding[((paddinglen + srcframe) * chans) + chan] : inbuf[(srcframe * chans) + chan]; const float insample = (srcframe < 0) ? lpadding[((paddinglen + srcframe) * chans) + chan] : inbuf[(srcframe * chans) + chan];
outsample += (float) (insample * (ResamplerFilter[filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)] + (interpolation1 * ResamplerFilterDifference[filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)]))); outsample += (float) (insample * (ResamplerFilter[filt_ind] + (interpolation1 * ResamplerFilterDifference[filt_ind])));
} }
/* Do the right wing! */ /* Do the right wing! */
for (j = 0; (filterindex2 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) { for (j = 0; (filterindex2 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) {
const int jsamples = j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING; const int filt_ind = filterindex2 + j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
const int srcframe = srcindex + 1 + j; const int srcframe = srcindex + 1 + j;
/* !!! FIXME: we can bubble this conditional out of here by doing a post loop. */ /* !!! FIXME: we can bubble this conditional out of here by doing a post loop. */
const float insample = (srcframe >= inframes) ? rpadding[((srcframe - inframes) * chans) + chan] : inbuf[(srcframe * chans) + chan]; const float insample = (srcframe >= inframes) ? rpadding[((srcframe - inframes) * chans) + chan] : inbuf[(srcframe * chans) + chan];
outsample += (float) (insample * (ResamplerFilter[filterindex2 + jsamples] + (interpolation2 * ResamplerFilterDifference[filterindex2 + jsamples]))); outsample += (float) (insample * (ResamplerFilter[filt_ind] + (interpolation2 * ResamplerFilterDifference[filt_ind])));
} }
*(dst++) = outsample; *(dst++) = outsample;
} }
outtime = ((ResampleFloatType)i) / ((ResampleFloatType)outrate);
} }
return outframes * chans * sizeof(float); return outframes * chans * sizeof(float);

View file

@ -8,6 +8,7 @@
#define _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS
#endif #endif
#include <math.h>
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
@ -965,6 +966,119 @@ int audio_openCloseAudioDeviceConnected()
return TEST_COMPLETED; return TEST_COMPLETED;
} }
static double sine_wave_sample(const Sint64 idx, const Sint64 rate, const Sint64 freq, const double phase)
{
/* Using integer modulo to avoid precision loss caused by large floating
* point numbers. Sint64 is needed for the large integer multiplication.
* The integers are assumed to be non-negative so that modulo is always
* non-negative.
* sin(i / rate * freq * 2 * M_PI + phase)
* = sin(mod(i / rate * freq, 1) * 2 * M_PI + phase)
* = sin(mod(i * freq, rate) / rate * 2 * M_PI + phase) */
return SDL_sin(((double) (idx * freq % rate)) / ((double) rate) * (M_PI * 2) + phase);
}
/**
* \brief Check signal-to-noise ratio and maximum error of audio resampling.
*
* \sa https://wiki.libsdl.org/SDL_BuildAudioCVT
* \sa https://wiki.libsdl.org/SDL_ConvertAudio
*/
int audio_resampleLoss()
{
/* Note: always test long input time (>= 5s from experience) in some test
* cases because an improper implementation may suffer from low resampling
* precision with long input due to e.g. doing subtraction with large floats. */
struct test_spec_t {
int time;
int freq;
double phase;
int rate_in;
int rate_out;
double signal_to_noise;
double max_error;
} test_specs[] = {
{ 50, 440, 0, 44100, 48000, 60, 0.0025 },
{ 50, 5000, M_PI / 2, 20000, 10000, 65, 0.0010 },
{ 0 }
};
int spec_idx = 0;
for (spec_idx = 0; test_specs[spec_idx].time > 0; ++spec_idx) {
const struct test_spec_t *spec = &test_specs[spec_idx];
const int frames_in = spec->time * spec->rate_in;
const int frames_target = spec->time * spec->rate_out;
const int len_in = frames_in * (int)sizeof(float);
const int len_target = frames_target * (int)sizeof(float);
Uint64 tick_beg = 0;
Uint64 tick_end = 0;
SDL_AudioCVT cvt;
int i = 0;
int ret = 0;
double max_error = 0;
double sum_squared_error = 0;
double sum_squared_value = 0;
double signal_to_noise = 0;
SDLTest_AssertPass("Test resampling of %i s %i Hz %f phase sine wave from sampling rate of %i Hz to %i Hz",
spec->time, spec->freq, spec->phase, spec->rate_in, spec->rate_out);
ret = SDL_BuildAudioCVT(&cvt, AUDIO_F32, 1, spec->rate_in, AUDIO_F32, 1, spec->rate_out);
SDLTest_AssertPass("Call to SDL_BuildAudioCVT(&cvt, AUDIO_F32, 1, %i, AUDIO_F32, 1, %i)", spec->rate_in, spec->rate_out);
SDLTest_AssertCheck(ret == 1, "Expected SDL_BuildAudioCVT to succeed and conversion to be needed.");
if (ret != 1) {
return TEST_ABORTED;
}
cvt.buf = (Uint8 *)SDL_malloc(len_in * cvt.len_mult);
SDLTest_AssertCheck(cvt.buf != NULL, "Expected input buffer to be created.");
if (cvt.buf == NULL) {
return TEST_ABORTED;
}
cvt.len = len_in;
for (i = 0; i < frames_in; ++i) {
*(((float *) cvt.buf) + i) = (float)sine_wave_sample(i, spec->rate_in, spec->freq, spec->phase);
}
tick_beg = SDL_GetPerformanceCounter();
ret = SDL_ConvertAudio(&cvt);
tick_end = SDL_GetPerformanceCounter();
SDLTest_AssertPass("Call to SDL_ConvertAudio(&cvt)");
SDLTest_AssertCheck(ret == 0, "Expected SDL_ConvertAudio to succeed.");
SDLTest_AssertCheck(cvt.len_cvt == len_target, "Expected output length %i, got %i.", len_target, cvt.len_cvt);
if (ret != 0 || cvt.len_cvt != len_target) {
SDL_free(cvt.buf);
return TEST_ABORTED;
}
SDLTest_Log("Resampling used %f seconds.", ((double) (tick_end - tick_beg)) / SDL_GetPerformanceFrequency());
for (i = 0; i < frames_target; ++i) {
const float output = *(((float *) cvt.buf) + i);
const double target = sine_wave_sample(i, spec->rate_out, spec->freq, spec->phase);
const double error = SDL_fabs(target - output);
max_error = SDL_max(max_error, error);
sum_squared_error += error * error;
sum_squared_value += target * target;
}
SDL_free(cvt.buf);
signal_to_noise = 10 * SDL_log10(sum_squared_value / sum_squared_error); /* decibel */
SDLTest_AssertCheck(isfinite(sum_squared_value), "Sum of squared target should be finite.");
SDLTest_AssertCheck(isfinite(sum_squared_error), "Sum of squared error should be finite.");
/* Infinity is theoretically possible when there is very little to no noise */
SDLTest_AssertCheck(!isnan(signal_to_noise), "Signal-to-noise ratio should not be NaN.");
SDLTest_AssertCheck(isfinite(max_error), "Maximum conversion error should be finite.");
SDLTest_AssertCheck(signal_to_noise >= spec->signal_to_noise, "Conversion signal-to-noise ratio %f dB should be no less than %f dB.",
signal_to_noise, spec->signal_to_noise);
SDLTest_AssertCheck(max_error <= spec->max_error, "Maximum conversion error %f should be no more than %f.",
max_error, spec->max_error);
}
return TEST_COMPLETED;
}
/* ================= Test Case References ================== */ /* ================= Test Case References ================== */
/* Audio test cases */ /* Audio test cases */
@ -1033,11 +1147,15 @@ static const SDLTest_TestCaseReference audioTest15 = {
(SDLTest_TestCaseFp)audio_pauseUnpauseAudio, "audio_pauseUnpauseAudio", "Pause and Unpause audio for various audio specs while testing callback.", TEST_ENABLED (SDLTest_TestCaseFp)audio_pauseUnpauseAudio, "audio_pauseUnpauseAudio", "Pause and Unpause audio for various audio specs while testing callback.", TEST_ENABLED
}; };
static const SDLTest_TestCaseReference audioTest16 = {
(SDLTest_TestCaseFp)audio_resampleLoss, "audio_resampleLoss", "Check signal-to-noise ratio and maximum error of audio resampling.", TEST_ENABLED
};
/* Sequence of Audio test cases */ /* Sequence of Audio test cases */
static const SDLTest_TestCaseReference *audioTests[] = { static const SDLTest_TestCaseReference *audioTests[] = {
&audioTest1, &audioTest2, &audioTest3, &audioTest4, &audioTest5, &audioTest6, &audioTest1, &audioTest2, &audioTest3, &audioTest4, &audioTest5, &audioTest6,
&audioTest7, &audioTest8, &audioTest9, &audioTest10, &audioTest11, &audioTest7, &audioTest8, &audioTest9, &audioTest10, &audioTest11,
&audioTest12, &audioTest13, &audioTest14, &audioTest15, NULL &audioTest12, &audioTest13, &audioTest14, &audioTest15, &audioTest16, NULL
}; };
/* Audio test suite (global) */ /* Audio test suite (global) */