A racing reader could read from our fd between SDL_IOReady()/X11_Pending()
and our call to XNextEvent() which will cause XNextEvent() to block for
more data. Avoid this by using XCheckIfEvent() which will never block.
This also fixes a bug where we could poll() for data, even when events were
already read and pending in the queue. Unlike the Wayland implementation,
this isn't totally thread-safe because nothing prevents a racing reader
from reading events into the queue between our XCheckIfEvent() and
SDL_IOReady() calls, but I think this is the best we can do with Xlib.
This API and implementation comes from the Unreal Engine branch of SDL, which
originally called this "SDL_ConfineCursor".
Some minor cleanup and changes for consistency with the rest of SDL_video, but
there are two major changes:
1. The coordinate system has been changed so that `rect` is _window_ relative
and not _screen_ relative, making it easier to implement without having
global access to the display.
2. The UE version unset all rects when passing `NULL` as a parameter for
`window`, this has been removed as it was an unused feature anyhow.
Currently this is only implemented for X, but can be supported on Wayland and
Windows at minimum too.
Add a new flag to avoid suppressing EINTR in SDL_IOReady(). Pass the
flag in WaitEventTimeout() to ensure that a SIGINT will wake up
SDL_WaitEvent() without another event coming in.
We don't use it, it was a leftover from 1.2, I think, and it doesn't exist
on Solaris, so this should hopefully fix the build there.
This also means we don't need the configure/cmake checks for
SDL_VIDEO_DRIVER_X11_CONST_PARAM_XEXTADDDISPLAY, so that was removed also.
Fixes#1666.
If we are already in the desired mode, changing it is a no-op at best,
and harmful at worst: on Xwayland, it sometimes happens that we disable
the crtc and cannot re-enable it.
Resolves: https://github.com/libsdl-org/SDL/issues/4630
Signed-off-by: Simon McVittie <smcv@collabora.com>
- cmake, configure (CheckDLOPEN): --enable-sdl-dlopen is now history..
detach the dl api discovery from SDL_LOADSO_DLOPEN functionality.
define HAVE_DLOPEN. also define DYNAPI_NEEDS_DLOPEN (CheckDLOPEN is
called only for relevant platforms.)
- update SDL_config.in and SDL_config.cmake accordingly.
- SDL_dynapi.h: set SDL_DYNAMIC_API to 0 if DYNAPI_NEEDS_DLOPEN is
defined, but HAVE_DLOPEN is not.
- pthread/SDL_systhread.c: conditionalize dl api use to HAVE_DLOPEN
- SDL_x11opengl.c, SDL_DirectFB_opengl.c, SDL_naclopengles.c: rely
on HAVE_DLOPEN, not SDL_LOADSO_DLOPEN.
- SDL_config_android.h, SDL_config_iphoneos.h, SDL_config_macosx.h,
SDL_config_pandora.h, and SDL_config_wiz.h: define HAVE_DLOPEN.
Closes: https://github.com/libsdl-org/SDL/pull/4351
b08b1bde introduced a subtle bug. Despite not using D-Bus types directly,
the code used the SDL_USE_LIBDBUS definition set by SDL_dbus.h to conditionally
compile calls SDL_DBus_ScreensaverTickle() and SDL_DBus_ScreensaverInhibit().
As a result, it still compiled without SDL_dbus.h included, but screensaver
suspension silently failed to work.
The D-Bus stuff could probably use some tweaks to be harder to accidentally
break, but for now just restore the header includes.
This is a workaround and not a proper fix, but this is possibly complicated,
and possibly a corner case, so this will do for 2.0.16, if not the
foreseeable future.
Reference issue #4561
This is needed to support CHERI, and thus Arm's experimental Morello
prototype, where pointers are implemented using unforgeable capabilities
that include bounds and permissions metadata to provide fine-grained
spatial and referential memory safety, as well as revocation by sweeping
memory to provide heap temporal memory safety.
On most systems (anything with a flat memory hierarchy rather than using
segment-based addressing), size_t and uintptr_t are the same type.
However, on CHERI, size_t is just an integer offset, whereas uintptr_t
is still a capability as described above. Casting a pointer to size_t
will strip the metadata and validity tag, and casting from size_t to a
pointer will result in a null-derived capability whose validity tag is
not set, and thus cannot be dereferenced without faulting.
The audio and cursor casts were harmless as they intend to stuff an
integer into a pointer, but using uintptr_t is the idiomatic way to do
that and silences our compiler warnings (which our build tool makes
fatal by default as they often indicate real problems). The iconv and
egl casts were true positives as SDL_iconv_t and iconv_t are pointer
types, as is NativeDisplayType on most OSes, so this would have trapped
at run time when using the round-tripped pointers. The gles2 casts were
also harmless; the OpenGL API defines this argument to be a pointer type
(and uses the argument name "pointer"), but it in fact represents an
integer offset, so like audio and cursor the additional idiomatic cast
is needed to silence the warning.
When choosing an X11 Visual for a window based on its GLX capabilities, first
try glXChooseFBConfig (if available) before falling back to glXChooseVisual.
This normally does not make a difference because most GLX drivers create a
Visual for every GLXFBConfig, exposing all of the same capabilities.
For GLX render offload configurations (also know as "PRIME") where one GPU is
providing GLX rendering support for windows on an X screen running on a
different GPU, the GPU doing the offloading needs to use the Visuals that were
created by the host GPU's driver rather than being able to add its own. This
means that there may be fewer Visuals available for all of the GLXFBConfigs the
guest driver wants to expose. In order to handle that situation, the NVIDIA GLX
driver creates many GLXFBConfigs that map to the same Visual when running in a
render offload configuration.
This can result in a glXChooseVisual request failing to find a supported Visual
when there is a GLXFBConfig for that configuration that would have worked. For
example, when the game "Unnamed SDVX Clone" [1] tries to create a configuration
with multisample, glXChooseVisual fails because the Visual assigned to the
multisample GLXFBConfigs is shared with the GLXFBConfigs without multisample.
Avoid this problem by using glXChooseFBConfig, when available, to find a
GLXFBConfig with the requested capabilities and then using
glXGetVisualFromFBConfig to find the corresponding X11 Visual. This allows the
game to run, although it doesn't make me any better at actually playing it...
Signed-off-by: Aaron Plattner <aplattner@nvidia.com>
Fixes: https://forums.developer.nvidia.com/t/prime-run-cannot-create-window-x-glxcreatecontext/180214
[1] https://github.com/Drewol/unnamed-sdvx-clone
X11_SetDisplayMode currently calls X11_XRRSetCrtcConfig alone. This results
in the monitor's viewport getting changed, but the underlying screen dimensions
stay the same.
The spec indicates that RRSetCrtcConfig only changes the crtc mode and has no effect
on the screen dimensions, only mentioning that the new crtc must fit entirely within the
screen size. For the size to change, RRSetScreenSize also needs to be called.
This affects Metro Exodus on Linux, when changing the resolution in the in-game settings
Metro gets stuck in a loop waiting for the size of its vulkan surface to change. Because
XRRSetScreenSize is not called the screen size is never changed, the vulkan surface dimensions
do not change, and Metro hangs forever watching for a surface size update that will
never come.
This change disables the CRTC, calls XRRSetScreenSize, and then updates the
CRTC configuration. This fixes changing the resolution from the Metro settings.
Tested with:
Metro Exodus, Portal 2
When possible use native os functions to make a blocking call waiting for
an incoming event. Previous behavior was to continuously poll the event
queue with a small delay between each poll.
The blocking call uses a new optional video driver event,
WaitEventTimeout, if available. It is called only if an window
already shown is available. If present the window is designated
using the variable wakeup_window to receive a wakeup event if
needed.
The WaitEventTimeout function accept a timeout parameter. If
positive the call will wait for an event or return if the timeout
expired without any event. If the timeout is zero it will
implement a polling behavior. If the timeout is negative the
function will block indefinetely waiting for an event.
To let the main thread sees events sent form a different thread
a "wake-up" signal is sent to the main thread if the main thread
is in a blocking state. The wake-up event is sent to the designated
wakeup_window if present.
The wake-up event is sent only if the PushEvent call is coming
from a different thread. Before sending the wake-up event
the ID of the thread making the blocking call is saved using the
variable blocking_thread_id and it is compared to the current
thread's id to decide if the wake-up event should be sent.
Two new optional video device methods are introduced:
WaitEventTimeout
SendWakeupEvent
in addition the mutex
wakeup_lock
which is defined and initialized but only for the drivers supporting the
methods above.
If the methods are not present the system behaves as previously
performing a periodic polling of the events queue.
The blocking call is disabled if a joystick or sensor is detected
and falls back to previous behavior.
This can give some performance boost, and save some resources, as there's no
reason to keep a copy of an SDL window's contents on the server: most SDL
apps are redrawing completely every frame, and the API allows for expose
events to tell an app a redraw is needed anyhow.
(And compositors are free to ignore this setting if it makes sense to do so,
according to the Xlib docs.)
Reference Issue #3776.