8.8 KiB
libsoundio
C library which provides cross-platform audio input and output. The API is suitable for real-time software such as digital audio workstations as well as consumer software such as music players.
This library is an abstraction; however it prioritizes performance and power over API convenience. Features that only exist in some sound backends are exposed.
This library is a work-in-progress.
Features
- Supported backends:
- C library. Depends only on the respective backend API libraries and libc. Does not depend on libstdc++, and does not have exceptions, run-time type information, or setjmp.
- Does not write anything to stdio. I'm looking at you, PortAudio.
- Supports channel layouts (also known as channel maps), important for surround sound applications.
- Ability to monitor devices and get an event when available devices change.
- Detects which input device is default and which output device is default.
- Ability to connect to multiple backends at once. For example you could have an ALSA device open and a JACK device open at the same time.
- Meticulously checks all return codes and memory allocations and uses meaningful error codes.
Synopsis
Complete program to emit a sine wave over the default device using the best backend:
#include <soundio/soundio.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
__attribute__ ((cold))
__attribute__ ((noreturn))
__attribute__ ((format (printf, 1, 2)))
static void panic(const char *format, ...) {
va_list ap;
va_start(ap, format);
vfprintf(stderr, format, ap);
fprintf(stderr, "\n");
va_end(ap);
abort();
}
static const float PI = 3.1415926535f;
static float seconds_offset = 0.0f;
static void write_callback(struct SoundIoOutStream *outstream, int requested_frame_count) {
float float_sample_rate = outstream->sample_rate;
float seconds_per_frame = 1.0f / float_sample_rate;
int err;
for (;;) {
int frame_count = requested_frame_count;
struct SoundIoChannelArea *areas;
if ((err = soundio_outstream_begin_write(outstream, &areas, &frame_count)))
panic("%s", soundio_strerror(err));
if (!frame_count)
break;
const struct SoundIoChannelLayout *layout = &outstream->layout;
float pitch = 440.0f;
float radians_per_second = pitch * 2.0f * PI;
for (int frame = 0; frame < frame_count; frame += 1) {
float sample = sinf((seconds_offset + frame * seconds_per_frame) * radians_per_second);
for (int channel = 0; channel < layout->channel_count; channel += 1) {
float *ptr = (float*)(areas[channel].ptr + areas[channel].step * frame);
*ptr = sample;
}
}
seconds_offset += seconds_per_frame * frame_count;
if ((err = soundio_outstream_end_write(outstream, frame_count)))
panic("%s", soundio_strerror(err));
requested_frame_count -= frame_count;
if (requested_frame_count <= 0)
break;
}
}
int main(int argc, char **argv) {
struct SoundIo *soundio = soundio_create();
if (!soundio)
panic("out of memory");
if ((err = soundio_connect(soundio)))
panic("error connecting: %s", soundio_strerror(err));
int default_out_device_index = soundio_get_default_output_device_index(soundio);
if (default_out_device_index < 0)
panic("no output device found");
struct SoundIoDevice *device = soundio_get_output_device(soundio, default_out_device_index);
if (!device)
panic("out of memory");
fprintf(stderr, "Output device: %s: %s\n", device->name, device->description);
struct SoundIoOutStream *outstream = soundio_outstream_create(device);
outstream->format = SoundIoFormatFloat32NE;
outstream->write_callback = write_callback;
if ((err = soundio_outstream_open(outstream)))
panic("unable to open device: %s", soundio_strerror(err));
if (outstream->layout_error)
fprintf(stderr, "unable to set channel layout: %s\n", soundio_strerror(outstream->layout_error));
if ((err = soundio_outstream_start(outstream)))
panic("unable to start device: %s", soundio_strerror(err));
for (;;)
soundio_wait_events(soundio);
soundio_outstream_destroy(outstream);
soundio_device_unref(device);
soundio_destroy(soundio);
return 0;
}
Backend Priority
When you use soundio_connect
, libsoundio tries these backends in order.
If unable to connect to that backend, due to the backend not being installed,
or the server not running, or the platform is wrong, the next backend is tried.
- JACK
- PulseAudio
- ALSA (Linux)
- CoreAudio (OSX)
- WASAPI (Windows)
- ASIO (Windows)
- Dummy
If you don't like this order, you can use soundio_connect_backend
to
explicitly choose a backend to connect to. You can use soundio_backend_count
and soundio_get_backend
to get the list of available backends.
For complete API documentation, see src/soundio.h
.
Contributing
libsoundio is programmed in a tiny subset of C++11:
- No STL.
- No
new
ordelete
. - No
class
. All fields in structs arepublic
. - No exceptions or run-time type information.
- No references.
- No linking against libstdc++.
Do not be fooled - this is a C library, not a C++ library. We just take advantage of a select few C++11 compiler features such as templates, and then link against libc.
Building
Install the dependencies:
- cmake
- ALSA library (optional)
- libjack2 (optional)
- libpulseaudio (optional)
mkdir build
cd build
cmake ..
make
sudo make install
Building for Windows
You can build libsoundio with mxe. Follow the requirements section to install the packages necessary on your system. Then somewhere on your file system:
git clone https://github.com/mxe/mxe
cd mxe
make gcc
Then in the libsoundio source directory (replace "/path/to/mxe" with the appropriate path):
mkdir build-win
cd build-win
cmake .. -DCMAKE_TOOLCHAIN_FILE=/path/to/mxe/usr/i686-w64-mingw32.static/share/cmake/mxe-conf.cmake
make
Running the Tests
make test
For more detailed output:
make
./unit_tests
To see test coverage, install lcov, run make coverage
and then
view coverage/index.html
in a browser.
Roadmap
- pipe record to playback example working with ALSA linux
- why does pulseaudio microphone use up all the CPU?
- merge in/out stream structures and functions?
- implement JACK backend, get examples working
- implement CoreAudio (OSX) backend, get examples working
- implement WASAPI (Windows) backend, get examples working
- Avoid calling
panic
in PulseAudio. - Figure out a way to test prebuf. I suspect prebuf not working for ALSA which is why we have to pre-fill the ring buffer with silence for the microphone example.
- implement ASIO (Windows) backend, get examples working
- clean up API and improve documentation
- make sure every function which can return an error documents which errors it can return
- use a documentation generator and host the docs somewhere
- -fvisibility=hidden and then explicitly export stuff
- Integrate into libgroove and test with Groove Basin
- look at microphone example and determine if fewer memcpys can be done
with the audio data
- test that sending the frame count to begin read works with PulseAudio
- add len arguments to APIs that have char *
- Test in an app that needs to synchronize video to test the latency/synchronization API.
- Support PulseAudio proplist properties for main context and streams
- custom allocator support
- mlock memory which is accessed in the real time path
- instead of
void *backend_data
use a union for better cache locality and smaller mlock requirements - Consider testing on FreeBSD
- make rtprio warning a callback and have existing behavior be the default callback
- write detailed docs on buffer underflows explaining when they occur, what state changes are related to them, and how to recover from them.