FasTC/BPTCEncoder/src/RGBAEndpointsSIMD.h

376 lines
9.6 KiB
C
Raw Normal View History

//--------------------------------------------------------------------------------------
// Copyright 2011 Intel Corporation
// All Rights Reserved
//
// Permission is granted to use, copy, distribute and prepare derivative works of this
// software for any purpose and without fee, provided, that the above copyright notice
// and this statement appear in all copies. Intel makes no representations about the
// suitability of this software for any purpose. THIS SOFTWARE IS PROVIDED "AS IS."
// INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, AND ALL LIABILITY,
// INCLUDING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE,
// INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not
// assume any responsibility for any errors which may appear in this software nor any
// responsibility to update it.
//
//--------------------------------------------------------------------------------------
#ifndef __RGBA_SIMD_ENDPOINTS_H__
#define __RGBA_SIMD_ENDPOINTS_H__
#include "TexCompTypes.h"
#include <cmath>
#include <cfloat>
#include <cstring>
#include <smmintrin.h>
static const int kNumColorChannels = 4;
static const int kMaxNumDataPoints = 16;
static const __m128 kEpsilonSIMD = _mm_set1_ps(1e-8f);
class RGBAVectorSIMD {
public:
union {
struct { float r, g, b, a; };
struct { float x, y, z, w; };
float c[4];
__m128 vec;
};
RGBAVectorSIMD() : r(-1.0), g(-1.0), b(-1.0), a(-1.0) { }
RGBAVectorSIMD(uint32 pixel) :
r(float(pixel & 0xFF)),
g(float((pixel >> 8) & 0xFF)),
b(float((pixel >> 16) & 0xFF)),
a(float((pixel >> 24) & 0xFF))
{ }
explicit RGBAVectorSIMD(float _r, float _g, float _b, float _a) :
r(_r), g(_g), b(_b), a(_a) { }
explicit RGBAVectorSIMD(float cc) : r(cc), g(cc), b(cc), a(cc) { }
RGBAVectorSIMD (const __m128 &newVec) : vec(newVec) { }
RGBAVectorSIMD (const RGBAVectorSIMD &other) : vec(other.vec) { }
RGBAVectorSIMD operator +(const RGBAVectorSIMD &p) const {
return RGBAVectorSIMD( _mm_add_ps(this->vec, p.vec) );
}
RGBAVectorSIMD &operator +=(const RGBAVectorSIMD &p) {
this->vec = _mm_add_ps(this->vec, p.vec);
return *this;
}
RGBAVectorSIMD operator -(const RGBAVectorSIMD &p) const {
return RGBAVectorSIMD( _mm_sub_ps(this->vec, p.vec) );
}
RGBAVectorSIMD &operator -=(const RGBAVectorSIMD &p) {
this->vec = _mm_sub_ps(this->vec, p.vec);
return *this;
}
RGBAVectorSIMD operator /(const float s) const {
return RGBAVectorSIMD( _mm_div_ps(this->vec, _mm_set1_ps(s) ) );
}
RGBAVectorSIMD &operator /=(const float s) {
this->vec = _mm_div_ps(this->vec, _mm_set1_ps(s) );
return *this;
}
float operator *(const RGBAVectorSIMD &p) const {
__m128 mul = _mm_mul_ps(this->vec, p.vec);
mul = _mm_hadd_ps(mul, mul);
mul = _mm_hadd_ps(mul, mul);
return ((float *)(&mul))[0];
}
void Normalize() {
__m128 rsqrt = _mm_rsqrt_ps( _mm_set1_ps( (*this) * (*this) ) );
vec = _mm_mul_ps( vec, rsqrt );
}
float Length() const {
return sqrt((*this) * (*this));
}
RGBAVectorSIMD &operator *=(const RGBAVectorSIMD &v) {
this->vec = _mm_mul_ps(this->vec, v.vec);
return *this;
}
RGBAVectorSIMD operator *(const float s) const {
return RGBAVectorSIMD( _mm_mul_ps( this->vec, _mm_set1_ps(s) ) );
}
friend RGBAVectorSIMD operator *(const float s, const RGBAVectorSIMD &p) {
return RGBAVectorSIMD( _mm_mul_ps( p.vec, _mm_set1_ps(s) ) );
}
RGBAVectorSIMD &operator *=(const float s) {
this->vec = _mm_mul_ps( this->vec, _mm_set1_ps(s) );
return *this;
}
float &operator [](const int i) {
return c[i];
}
friend bool operator ==(const RGBAVectorSIMD &rhs, const RGBAVectorSIMD &lhs) {
__m128 d = _mm_sub_ps(rhs.vec, lhs.vec);
d = _mm_mul_ps(d, d);
__m128 cmp = _mm_cmpgt_ps(d, kEpsilonSIMD);
cmp = _mm_hadd_ps(cmp, cmp);
cmp = _mm_hadd_ps(cmp, cmp);
return ((float *)(&cmp))[0] == 0.0f;
}
friend bool operator !=(const RGBAVectorSIMD &rhs, const RGBAVectorSIMD &lhs) {
return !(rhs == lhs);
}
operator float *() {
return c;
}
// Quantize this point.
__m128i ToPixel(const __m128i &channelMask, const int pBit) const;
__m128i ToPixel(const __m128i &channelMask) const;
};
class RGBAMatrixSIMD {
private:
union {
float m[kNumColorChannels*kNumColorChannels];
struct {
float m1, m5, m9, m13;
float m2, m6, m10, m14;
float m3, m7, m11, m15;
float m4, m8, m12, m16;
};
__m128 col[kNumColorChannels];
};
RGBAMatrixSIMD(const float *arr) {
memcpy(m, arr, sizeof(m));
}
RGBAMatrixSIMD(const __m128 newcol[kNumColorChannels]) {
for(int i = 0; i < kNumColorChannels; i++)
col[i] = newcol[i];
}
public:
RGBAMatrixSIMD() :
m1(1.0f), m2(0.0f), m3(0.0f), m4(0.0f),
m5(0.0f), m6(1.0f), m7(0.0f), m8(0.0f),
m9(0.0f), m10(0.0f), m11(1.0f), m12(0.0f),
m13(0.0f), m14(0.0f), m15(0.0f), m16(1.0f)
{ }
RGBAMatrixSIMD &operator =(const RGBAMatrixSIMD &other) {
memcpy(m, other.m, sizeof(m));
return (*this);
}
RGBAMatrixSIMD operator +(const RGBAMatrixSIMD &p) const {
RGBAMatrixSIMD newm;
for(int i = 0; i < kNumColorChannels; i++) {
newm.col[i] = _mm_add_ps(col[i], p.col[i]);
}
return newm;
}
RGBAMatrixSIMD &operator +=(const RGBAMatrixSIMD &p) {
for(int i = 0; i < kNumColorChannels; i++) {
col[i] = _mm_add_ps( col[i], p.col[i] );
}
return *this;
}
RGBAMatrixSIMD operator -(const RGBAMatrixSIMD &p) const {
RGBAMatrixSIMD newm;
for(int i = 0; i < kNumColorChannels; i++) {
newm.col[i] = _mm_sub_ps( col[i], p.col[i] );
}
return newm;
}
RGBAMatrixSIMD &operator -=(const RGBAMatrixSIMD &p) {
for(int i = 0; i < kNumColorChannels; i++) {
col[i] = _mm_sub_ps( col[i], p.col[i] );
}
return *this;
}
RGBAMatrixSIMD operator /(const float s) const {
__m128 f = _mm_set1_ps(s);
RGBAMatrixSIMD newm;
for(int i = 0; i < kNumColorChannels; i++) {
newm.col[i] = _mm_div_ps( col[i], f );
}
return newm;
}
RGBAMatrixSIMD &operator /=(const float s) {
__m128 f = _mm_set1_ps(s);
for(int i = 0; i < kNumColorChannels; i++) {
col[i] = _mm_div_ps(col[i], f);
}
return *this;
}
RGBAMatrixSIMD operator *(const float s) const {
__m128 f = _mm_set1_ps(s);
RGBAMatrixSIMD newm;
for(int i = 0; i < kNumColorChannels; i++) {
newm.col[i] = _mm_mul_ps( col[i], f );
}
return newm;
}
friend RGBAMatrixSIMD operator *(const float s, const RGBAMatrixSIMD &p) {
__m128 f = _mm_set1_ps(s);
RGBAMatrixSIMD newm;
for(int i = 0; i < kNumColorChannels; i++) {
newm.col[i] = _mm_mul_ps( p.col[i], f );
}
return newm;
}
RGBAMatrixSIMD &operator *=(const float s) {
__m128 f = _mm_set1_ps(s);
for(int i = 0; i < kNumColorChannels; i++)
col[i] = _mm_mul_ps(col[i], f);
return *this;
}
float &operator ()(const int i, const int j) {
return (*this)[j*4 + i];
}
float &operator [](const int i) {
return m[i];
}
friend bool operator ==(const RGBAMatrixSIMD &rhs, const RGBAMatrixSIMD &lhs) {
__m128 sum = _mm_set1_ps(0.0f);
for(int i = 0; i < kNumColorChannels; i++) {
__m128 d = _mm_sub_ps(rhs.col[i], lhs.col[i]);
d = _mm_mul_ps(d, d);
__m128 cmp = _mm_cmpgt_ps(d, kEpsilonSIMD);
cmp = _mm_hadd_ps(cmp, cmp);
cmp = _mm_hadd_ps(cmp, cmp);
sum = _mm_add_ps(sum, cmp);
}
if(((float *)(&sum))[0] != 0)
return false;
else
return true;
}
operator float *() {
return m;
}
RGBAVectorSIMD operator *(const RGBAVectorSIMD &p) const;
};
class RGBADirSIMD : public RGBAVectorSIMD {
public:
RGBADirSIMD() : RGBAVectorSIMD() { }
RGBADirSIMD(const RGBAVectorSIMD &p) : RGBAVectorSIMD(p) {
this->Normalize();
}
};
// Makes sure that the values of the endpoints lie between 0 and 1.
extern void ClampEndpoints(RGBAVectorSIMD &p1, RGBAVectorSIMD &p2);
class RGBAClusterSIMD {
public:
RGBAClusterSIMD() :
m_NumPoints(0), m_Total(0.0f),
m_PointBitString(0),
m_Min(FLT_MAX),
m_Max(-FLT_MAX),
m_PrincipalAxisCached(false)
{ }
RGBAClusterSIMD(const RGBAClusterSIMD &c) :
m_NumPoints(c.m_NumPoints),
m_Total(c.m_Total),
m_PointBitString(c.m_PointBitString),
m_Min(c.m_Min),
m_Max(c.m_Max),
m_PrincipalAxisCached(false)
{
memcpy(this->m_DataPoints, c.m_DataPoints, m_NumPoints * sizeof(RGBAVectorSIMD));
}
RGBAClusterSIMD(const RGBAClusterSIMD &left, const RGBAClusterSIMD &right);
RGBAClusterSIMD(const RGBAVectorSIMD &p, int idx) :
m_NumPoints(1),
m_Total(p),
m_PointBitString(0),
m_Min(p), m_Max(p),
m_PrincipalAxisCached(false)
{
m_DataPoints[0] = p;
m_PointBitString |= (1 << idx);
}
RGBAVectorSIMD GetTotal() const { return m_Total; }
const RGBAVectorSIMD &GetPoint(int idx) const { return m_DataPoints[idx]; }
int GetNumPoints() const { return m_NumPoints; }
RGBAVectorSIMD GetAvg() const { return m_Total / float(m_NumPoints); }
void AddPoint(const RGBAVectorSIMD &p, int idx);
void GetBoundingBox(RGBAVectorSIMD &Min, RGBAVectorSIMD &Max) const {
Min = m_Min, Max = m_Max;
}
// Returns the error if we were to quantize the colors right now with the given number of buckets and bit mask.
float QuantizedError(const RGBAVectorSIMD &p1, const RGBAVectorSIMD &p2, const uint8 nBuckets, const __m128i &bitMask, const int pbits[2] = NULL, __m128i *indices = NULL) const;
bool AllSamePoint() const { return m_Max == m_Min; }
int GetPointBitString() const { return m_PointBitString; }
private:
// The number of points in the cluster.
int m_NumPoints;
RGBAVectorSIMD m_Total;
// The points in the cluster.
RGBAVectorSIMD m_DataPoints[kMaxNumDataPoints];
RGBAVectorSIMD m_Min, m_Max;
int m_PointBitString;
RGBADirSIMD m_PrincipalAxis;
bool m_PrincipalAxisCached;
};
extern void GetPrincipalAxis(const RGBAClusterSIMD &c, RGBADirSIMD &axis);
#endif //__RGBA_SIMD_ENDPOINTS_H__