FasTC/BPTCEncoder/src/CompressionMode.h

348 lines
13 KiB
C
Raw Normal View History

2012-11-15 16:51:55 +00:00
/* FasTC
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
* All rights reserved.
2012-11-15 16:51:55 +00:00
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
2012-11-15 16:51:55 +00:00
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
2012-11-15 16:51:55 +00:00
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
2012-11-15 16:51:55 +00:00
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
2012-11-15 16:51:55 +00:00
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
2012-11-15 16:51:55 +00:00
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
// The original lisence from the code available at the following location:
// http://software.intel.com/en-us/vcsource/samples/fast-texture-compression
//
// This code has been modified significantly from the original.
//------------------------------------------------------------------------------
// Copyright 2011 Intel Corporation
// All Rights Reserved
//
// Permission is granted to use, copy, distribute and prepare derivative works
// of this software for any purpose and without fee, provided, that the above
// copyright notice and this statement appear in all copies. Intel makes no
// representations about the suitability of this software for any purpose. THIS
// SOFTWARE IS PROVIDED "AS IS." INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES,
// EXPRESS OR IMPLIED, AND ALL LIABILITY, INCLUDING CONSEQUENTIAL AND OTHER
// INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, INCLUDING LIABILITY FOR
// INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not assume
// any responsibility for any errors which may appear in this software nor any
// responsibility to update it.
//
//------------------------------------------------------------------------------
#ifndef BPTCENCODER_SRC_BPTCCOMPRESSIONMODE_H_
#define BPTCENCODER_SRC_BPTCCOMPRESSIONMODE_H_
#include "RGBAEndpoints.h"
2014-01-21 20:04:39 +00:00
namespace FasTC {
class BitStream;
} // namespace FasTC
namespace BPTCC {
// Forward Declarations
2013-02-06 02:54:06 +00:00
struct VisitedState;
const int kMaxEndpoints = 3;
static const int kPBits[4][2] = {
2013-03-21 03:27:17 +00:00
{ 0, 0 },
{ 0, 1 },
{ 1, 0 },
{ 1, 1 }
};
class CompressionMode {
2013-03-21 03:27:17 +00:00
public:
static const uint32 kMaxNumSubsets = 3;
static const uint32 kNumModes = 8;
// This initializes the compression variables used in order to compress a list
// of clusters. We can increase the speed a tad by specifying whether or not
// the block is opaque or not.
explicit CompressionMode(int mode, const CompressionSettings &settings)
: m_IsOpaque(mode < 4)
2013-03-21 03:27:17 +00:00
, m_Attributes(&(kModeAttributes[mode]))
, m_SASteps(settings.m_NumSimulatedAnnealingSteps)
, m_ErrorMetric(settings.m_ErrorMetric)
2013-03-21 03:27:17 +00:00
, m_RotateMode(0)
, m_IndexMode(0)
2013-03-21 03:27:17 +00:00
{ }
~CompressionMode() { }
2013-03-21 03:27:17 +00:00
// These are all of the parameters required to define the data in a compressed
// BPTC block. The mode determines how these parameters will be translated
// into actual bits.
struct Params {
RGBAVector m_P1[kMaxNumSubsets], m_P2[kMaxNumSubsets];
uint8 m_Indices[kMaxNumSubsets][kMaxNumDataPoints];
uint8 m_AlphaIndices[kMaxNumDataPoints];
uint8 m_PbitCombo[kMaxNumSubsets];
2014-03-21 05:14:36 +00:00
int8 m_RotationMode;
int8 m_IndexMode;
uint16 m_ShapeIdx;
Params() { }
explicit Params(uint32 shape)
: m_RotationMode(-1), m_IndexMode(-1), m_ShapeIdx(shape) {
memset(m_Indices, 0xFF, sizeof(m_Indices));
memset(m_AlphaIndices, 0xFF, sizeof(m_AlphaIndices));
memset(m_PbitCombo, 0xFF, sizeof(m_PbitCombo));
}
};
// This outputs the parameters to the given bitstream based on the current
// compression mode. The first argument is not const because the mode and
// the value of the first index determines whether or not the indices need to
// be swapped. The final output bits will always be a valid BPTC block.
void Pack(Params &params, FasTC::BitStream &stream) const;
// This function compresses a group of clusters into the passed bitstream.
double Compress(Params &params, const int shapeIdx,
RGBACluster &cluster);
// This switch controls the quality of the simulated annealing optimizer. We
// will not make more than this many steps regardless of how bad the error is.
// Higher values will produce better quality results but will run slower.
// Default is 20.
static int MaxAnnealingIterations; // This is a setting
static const int kMaxAnnealingIterations = 256; // This is a limit
// P-bits are low-order bits that are shared across color channels. This enum
// says whether or not both endpoints share a p-bit or whether or not they
// even have a p-bit.
2013-03-21 03:27:17 +00:00
enum EPBitType {
ePBitType_Shared,
ePBitType_NotShared,
ePBitType_None
};
// These are all the per-mode attributes that can be set. They are specified
// in a table and we access them through the private m_Attributes variable.
2013-03-21 03:27:17 +00:00
static struct Attributes {
int modeNumber;
int numPartitionBits;
int numSubsets;
int numBitsPerIndex;
int numBitsPerAlpha;
int colorChannelPrecision;
int alphaChannelPrecision;
bool hasRotation;
bool hasIdxMode;
EPBitType pbitType;
} kModeAttributes[kNumModes];
// This returns the above attributes structure for the given mode.
static const Attributes *GetAttributesForMode(int mode) {
if(mode < 0 || mode >= 8) return NULL;
return &kModeAttributes[mode];
}
private:
2013-03-21 03:27:17 +00:00
const double m_IsOpaque;
const Attributes *const m_Attributes;
int m_SASteps;
ErrorMetric m_ErrorMetric;
2013-03-21 03:27:17 +00:00
int m_RotateMode;
int m_IndexMode;
void SetIndexMode(int mode) { m_IndexMode = mode; }
void SetRotationMode(int mode) { m_RotateMode = mode; }
int GetRotationMode() const {
return m_Attributes->hasRotation? m_RotateMode : 0;
}
2013-03-21 03:27:17 +00:00
int GetModeNumber() const { return m_Attributes->modeNumber; }
int GetNumberOfPartitionBits() const {
return m_Attributes->numPartitionBits;
}
2013-03-21 03:27:17 +00:00
int GetNumberOfSubsets() const { return m_Attributes->numSubsets; }
int GetNumberOfBitsPerIndex(int8 indexMode = -1) const {
2013-03-21 03:27:17 +00:00
if(indexMode < 0) indexMode = m_IndexMode;
if(indexMode == 0)
return m_Attributes->numBitsPerIndex;
2013-03-21 03:27:17 +00:00
else
return m_Attributes->numBitsPerAlpha;
2013-03-21 03:27:17 +00:00
}
int GetNumberOfBitsPerAlpha(int8 indexMode = -1) const {
2013-03-21 03:27:17 +00:00
if(indexMode < 0) indexMode = m_IndexMode;
if(indexMode == 0)
return m_Attributes->numBitsPerAlpha;
2013-03-21 03:27:17 +00:00
else
return m_Attributes->numBitsPerIndex;
2013-03-21 03:27:17 +00:00
}
// If we handle alpha separately, then we will consider the alpha channel
// to be not used whenever we do any calculations...
int GetAlphaChannelPrecision() const {
return m_Attributes->alphaChannelPrecision;
2013-03-21 03:27:17 +00:00
}
// This returns the proper error metric even if we have rotation bits set
RGBAVector GetErrorMetric() const {
const float *w = BPTCC::GetErrorMetric(m_ErrorMetric);
2013-03-21 03:27:17 +00:00
switch(GetRotationMode()) {
default:
case 0: return RGBAVector(w[0], w[1], w[2], w[3]);
case 1: return RGBAVector(w[3], w[1], w[2], w[0]);
case 2: return RGBAVector(w[0], w[3], w[2], w[1]);
case 3: return RGBAVector(w[0], w[1], w[3], w[2]);
}
}
EPBitType GetPBitType() const { return m_Attributes->pbitType; }
// This function creates an integer that represents the maximum values in each
// channel. We can use this to figure out the proper endpoint values for a
// given mode.
2013-03-21 03:27:17 +00:00
unsigned int GetQuantizationMask() const {
const int maskSeed = 0x80000000;
const uint32 alphaPrec = GetAlphaChannelPrecision();
const uint32 cbits = m_Attributes->colorChannelPrecision - 1;
const uint32 abits = GetAlphaChannelPrecision() - 1;
2013-03-21 03:27:17 +00:00
if(alphaPrec > 0) {
return (
(maskSeed >> (24 + cbits) & 0xFF) |
(maskSeed >> (16 + cbits) & 0xFF00) |
(maskSeed >> (8 + cbits) & 0xFF0000) |
(maskSeed >> abits & 0xFF000000)
2013-03-21 03:27:17 +00:00
);
} else {
2013-03-21 03:27:17 +00:00
return (
((maskSeed >> (24 + cbits) & 0xFF) |
(maskSeed >> (16 + cbits) & 0xFF00) |
(maskSeed >> (8 + cbits) & 0xFF0000)) &
2013-03-21 03:27:17 +00:00
(0x00FFFFFF)
);
}
}
int GetNumPbitCombos() const {
switch(GetPBitType()) {
case ePBitType_Shared: return 2;
case ePBitType_NotShared: return 4;
default:
case ePBitType_None: return 1;
}
}
const int *GetPBitCombo(int idx) const {
switch(GetPBitType()) {
case ePBitType_Shared: return (idx)? kPBits[3] : kPBits[0];
case ePBitType_NotShared: return kPBits[idx % 4];
default:
case ePBitType_None: return kPBits[0];
}
}
// This performs simulated annealing on the endpoints p1 and p2 based on the
// current MaxAnnealingIterations. This is set by calling the function
2013-03-21 03:27:17 +00:00
// SetQualityLevel
double OptimizeEndpointsForCluster(
2013-02-06 02:54:06 +00:00
const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2,
uint8 *bestIndices,
uint8 &bestPbitCombo
2013-02-06 02:54:06 +00:00
) const;
2013-03-21 03:27:17 +00:00
// This function performs the heuristic to choose the "best" neighboring
// endpoints to p1 and p2 based on the compression mode (index precision,
// endpoint precision etc)
void PickBestNeighboringEndpoints(
const RGBACluster &cluster,
const RGBAVector &p1, const RGBAVector &p2,
const int curPbitCombo,
RGBAVector &np1, RGBAVector &np2,
int &nPbitCombo,
const VisitedState *visitedStates,
int nVisited,
2013-03-21 03:27:17 +00:00
float stepSz = 1.0f
) const;
// This is used by simulated annealing to determine whether or not the
// newError (from the neighboring endpoints) is sufficient to continue the
// annealing process from these new endpoints based on how good the oldError
// was, and how long we've been annealing (t)
bool AcceptNewEndpointError(double newError, double oldError, float t) const;
// This function figures out the best compression for the single color p, and
// places the endpoints in p1 and p2. If the compression mode supports p-bits,
// then we choose the best p-bit combo and return it as well.
double CompressSingleColor(const RGBAVector &p,
RGBAVector &p1, RGBAVector &p2,
uint8 &bestPbitCombo) const;
// Compress the cluster using a generalized cluster fit. This figures out the
// proper endpoints assuming that we have no alpha.
double CompressCluster(const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2,
uint8 *bestIndices, uint8 &bestPbitCombo) const;
// Compress the non-opaque cluster using a generalized cluster fit, and place
// the endpoints within p1 and p2. The color indices and alpha indices are
// computed as well.
double CompressCluster(const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2,
uint8 *bestIndices, uint8 *alphaIndices) const;
// This function takes two endpoints in the continuous domain (as floats) and
// clamps them to the nearest grid points based on the compression mode (and
// possible pbit values)
void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2,
uint8 &bestPBitCombo) const;
};
extern const uint32 kInterpolationValues[4][16][2];
} // namespace BPTCC {
#endif // BPTCENCODER_SRC_BPTCCOMPRESSIONMODE_H_