FasTC/Base/src/Image.cpp

562 lines
16 KiB
C++
Raw Normal View History

2012-11-15 16:51:55 +00:00
/* FasTC
* Copyright (c) 2012 University of North Carolina at Chapel Hill. All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its documentation for educational,
* research, and non-profit purposes, without fee, and without a written agreement is hereby granted,
* provided that the above copyright notice, this paragraph, and the following four paragraphs appear
* in all copies.
*
* Permission to incorporate this software into commercial products may be obtained by contacting the
* authors or the Office of Technology Development at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of North Carolina at Chapel Hill.
* The software program and documentation are supplied "as is," without any accompanying services from the
* University of North Carolina at Chapel Hill or the authors. The University of North Carolina at Chapel Hill
* and the authors do not warrant that the operation of the program will be uninterrupted or error-free. The
* end-user understands that the program was developed for research purposes and is advised not to rely
* exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE AUTHORS BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
* USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY
* OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#include "Image.h"
2013-10-10 23:36:19 +00:00
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <cmath>
2013-10-08 22:38:11 +00:00
#include "Color.h"
#include "Pixel.h"
#include "IPixel.h"
template <typename T>
static inline T sad( const T &a, const T &b ) {
return (a > b)? a - b : b - a;
}
2013-10-21 19:49:42 +00:00
// wtf
#ifdef _MSC_VER
template<typename T> T log2(T x) { return static_cast<T>(log((long double)x) / log(2.0)); }
#endif
namespace FasTC {
template<typename PixelType>
Image<PixelType>::Image(uint32 width, uint32 height)
: m_Width(width)
, m_Height(height)
, m_Pixels(new PixelType[GetNumPixels()])
{ }
template<typename PixelType>
Image<PixelType>::Image(uint32 width, uint32 height,
const PixelType *pixels)
: m_Width(width)
, m_Height(height)
{
if(pixels) {
m_Pixels = new PixelType[GetNumPixels()];
memcpy(m_Pixels, pixels, GetNumPixels() * sizeof(PixelType));
} else {
m_Pixels = 0;
}
}
template<typename PixelType>
Image<PixelType>::Image(const Image<PixelType> &other)
: m_Width(other.m_Width)
, m_Height(other.m_Height)
, m_Pixels(new PixelType[GetNumPixels()])
2013-02-07 22:01:38 +00:00
{
memcpy(m_Pixels, other.m_Pixels, GetNumPixels() * sizeof(PixelType));
}
template<typename PixelType>
bool Image<PixelType>::ReadPixels(const uint32 *rgba) {
assert(m_Pixels);
for(uint32 i = 0; i < GetNumPixels(); i++) {
m_Pixels[i].Unpack(rgba[i]);
2013-02-07 22:01:38 +00:00
}
return true;
2013-02-07 22:01:38 +00:00
}
template<typename PixelType>
Image<PixelType>::Image(uint32 width, uint32 height, const uint32 *pixels)
: m_Width(width)
, m_Height(height)
{
if(pixels) {
m_Pixels = new PixelType[GetNumPixels()];
ReadPixels(pixels);
} else {
m_Pixels = NULL;
}
}
template<typename PixelType>
Image<PixelType>::~Image() {
if(m_Pixels) {
delete [] m_Pixels;
m_Pixels = 0;
}
}
template<typename PixelType>
Image<PixelType> &Image<PixelType>::operator=(const Image &other) {
2013-02-07 22:01:38 +00:00
m_Width = other.m_Width;
m_Height = other.m_Height;
if(m_Pixels) {
delete [] m_Pixels;
2013-02-07 22:01:38 +00:00
}
if(other.m_Pixels) {
m_Pixels = new PixelType[GetNumPixels()];
if(m_Pixels)
memcpy(m_Pixels, other.m_Pixels, GetNumPixels() * sizeof(PixelType));
2013-02-07 22:01:38 +00:00
else
fprintf(stderr, "Out of memory!\n");
} else {
m_Pixels = NULL;
2013-02-07 22:01:38 +00:00
}
2013-02-07 22:01:38 +00:00
return *this;
}
template<typename PixelType>
PixelType & Image<PixelType>::operator()(uint32 i, uint32 j) {
assert(i < GetWidth());
assert(j < GetHeight());
return m_Pixels[j * GetWidth() + i];
}
template<typename PixelType>
const PixelType & Image<PixelType>::operator()(uint32 i, uint32 j) const {
assert(i < GetWidth());
assert(j < GetHeight());
return m_Pixels[j * GetWidth() + i];
}
template<typename PixelType>
double Image<PixelType>::ComputePSNR(Image<PixelType> *other) {
if(!other)
return -1.0;
if(GetWidth() != other->GetWidth() ||
GetHeight() != other->GetHeight()) {
return -1.0;
}
// Compute raw 8-bit RGBA data...
ComputePixels();
other->ComputePixels();
const PixelType *ourPixels = GetPixels();
const PixelType *otherPixels = other->GetPixels();
2013-09-27 00:18:26 +00:00
// const double w[3] = { 0.2126, 0.7152, 0.0722 };
const double w[3] = { 1.0, 1.0, 1.0 };
2013-09-27 00:18:26 +00:00
double mse = 0.0;
const uint32 imageSz = GetNumPixels();
for(uint32 i = 0; i < imageSz; i++) {
uint32 ourPixel = ourPixels[i].Pack();
uint32 otherPixel = otherPixels[i].Pack();
2013-09-29 02:21:31 +00:00
double r[4], u[4];
2013-09-27 00:18:26 +00:00
for(uint32 c = 0; c < 4; c++) {
uint32 shift = c * 8;
2013-09-27 00:18:26 +00:00
if(c == 3) {
r[c] = static_cast<double>((ourPixel >> shift) & 0xFF) / 255.0;
u[c] = static_cast<double>((otherPixel >> shift) & 0xFF) / 255.0;
2013-09-27 00:18:26 +00:00
} else {
r[c] = static_cast<double>((ourPixel >> shift) & 0xFF) * w[c];
u[c] = static_cast<double>((otherPixel >> shift) & 0xFF) * w[c];
2013-09-27 00:18:26 +00:00
}
}
for(uint32 c = 0; c < 3; c++) {
double diff = (r[3] * r[c] - u[3] * u[c]);
mse += diff * diff;
}
}
mse /= GetWidth() * GetHeight();
2013-09-27 00:18:26 +00:00
const double C = 255.0 * 255.0;
double maxi = (w[0]*w[0] + w[1]*w[1] + w[2]*w[2]) * C;
return 10 * log10(maxi/mse);
}
static Image<IPixel> FilterValid(const Image<IPixel> &img, uint32 size, double sigma) {
assert(size % 2);
Image<IPixel> gaussian(size, size);
GenerateGaussianKernel(gaussian, size, static_cast<float>(sigma));
double sum = 0.0;
for(uint32 j = 0; j < size; j++) {
for(uint32 i = 0; i < size; i++) {
sum += static_cast<float>(gaussian(i, j));
}
}
for(uint32 j = 0; j < size; j++) {
for(uint32 i = 0; i < size; i++) {
double v = static_cast<float>(gaussian(i, j));
gaussian(i, j) = static_cast<float>(v / sum);
}
}
int32 h = static_cast<int32>(img.GetHeight());
int32 w = static_cast<int32>(img.GetWidth());
Image<IPixel> out(img.GetWidth() - size + 1, img.GetHeight() - size + 1);
int32 halfSz = static_cast<int32>(size) >> 1;
for(int32 j = halfSz; j < h-halfSz; j++) {
for(int32 i = halfSz; i < w-halfSz; i++) {
int32 xoffset = -halfSz;
int32 yoffset = -halfSz;
double result = 0;
for(int32 y = 0; y < static_cast<int32>(size); y++)
for(int32 x = 0; x < static_cast<int32>(size); x++) {
double s = static_cast<float>(gaussian(x, y));
result += s * static_cast<float>(img(i+xoffset+x, j+yoffset+y));
}
out(i+xoffset, j+yoffset) = static_cast<float>(result);
}
}
return out;
}
template<typename PixelType>
2013-10-12 20:37:48 +00:00
double Image<PixelType>::ComputeSSIM(Image<PixelType> *other) {
if(!other) {
return -1.0;
}
if(GetWidth() != other->GetWidth() ||
GetHeight() != other->GetHeight()) {
return -1.0;
}
2013-10-11 17:05:59 +00:00
ComputePixels();
other->ComputePixels();
double C1 = (0.01 * 255.0 * 0.01 * 255.0);
double C2 = (0.03 * 255.0 * 0.03 * 255.0);
Image<IPixel> img1(GetWidth(), GetHeight());
Image<IPixel> img2(GetWidth(), GetHeight());
ConvertTo(img1);
other->ConvertTo(img2);
for(uint32 j = 0; j < GetHeight(); j++) {
for(uint32 i = 0; i < GetWidth(); i++) {
img1(i, j) = 255.0f * static_cast<float>(img1(i, j));
img2(i, j) = 255.0f * static_cast<float>(img2(i, j));
}
}
/* Matlab code taken from
http://www.cns.nyu.edu/lcv/ssim/ssim_index.m
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);
mu1 = filter2(window, img1, 'valid');
mu2 = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./
((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
*/
const uint32 filterSz = 11;
const double filterSigma = 1.5;
Image<IPixel> mu1 = FilterValid(img1, filterSz, filterSigma);
Image<IPixel> mu2 = FilterValid(img2, filterSz, filterSigma);
assert(mu1.GetHeight() == mu2.GetHeight());
assert(mu1.GetWidth() == mu2.GetWidth());
Image<IPixel> mu1_sq(mu1);
Image<IPixel> mu2_sq(mu2);
Image<IPixel> mu1_mu2(mu1);
Image<IPixel> sigma1_sq(img1);
Image<IPixel> sigma2_sq(img2);
Image<IPixel> sigma12(img1);
uint32 w = ::std::max(img1.GetWidth(), mu1.GetWidth());
uint32 h = ::std::max(img1.GetHeight(), mu1.GetHeight());
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
if(i < mu1.GetWidth() && j < mu1.GetHeight()) {
double m1 = static_cast<float>(mu1(i, j));
double m2 = static_cast<float>(mu2(i, j));
mu1_sq(i, j) = static_cast<float>(m1 * m1);
mu2_sq(i, j) = static_cast<float>(m2 * m2);
mu1_mu2(i, j) = static_cast<float>(m1 * m2);
}
if(i < img1.GetWidth() && j < img1.GetHeight()) {
double i1 = static_cast<float>(img1(i, j));
double i2 = static_cast<float>(img2(i, j));
sigma1_sq(i, j) = static_cast<float>(i1 * i1);
sigma2_sq(i, j) = static_cast<float>(i2 * i2);
sigma12(i, j) = static_cast<float>(i1 * i2);
}
}
}
sigma1_sq = FilterValid(sigma1_sq, filterSz, filterSigma);
sigma2_sq = FilterValid(sigma2_sq, filterSz, filterSigma);
sigma12 = FilterValid(sigma12, filterSz, filterSigma);
assert(sigma1_sq.GetWidth() == mu1.GetWidth());
assert(sigma1_sq.GetHeight() == mu1.GetHeight());
assert(sigma2_sq.GetWidth() == mu1.GetWidth());
assert(sigma2_sq.GetHeight() == mu1.GetHeight());
assert(sigma12.GetWidth() == mu1.GetWidth());
assert(sigma12.GetHeight() == mu1.GetHeight());
w = mu1_sq.GetWidth();
h = mu2_sq.GetHeight();
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
double m1sq = static_cast<float>(mu1_sq(i, j));
double m2sq = static_cast<float>(mu2_sq(i, j));
double m1m2 = static_cast<float>(mu1_mu2(i, j));
double s1sq = static_cast<float>(sigma1_sq(i, j));
double s2sq = static_cast<float>(sigma2_sq(i, j));
double s1s2 = static_cast<float>(sigma12(i, j));
sigma1_sq(i, j) = static_cast<float>(s1sq - m1sq);
sigma2_sq(i, j) = static_cast<float>(s2sq - m2sq);
sigma12(i, j) = static_cast<float>(s1s2 - m1m2);
}
}
2013-10-12 20:37:48 +00:00
double mssim = 0.0;
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
double m1sq = static_cast<float>(mu1_sq(i, j));
double m2sq = static_cast<float>(mu2_sq(i, j));
double m1m2 = static_cast<float>(mu1_mu2(i, j));
double s1sq = static_cast<float>(sigma1_sq(i, j));
double s2sq = static_cast<float>(sigma2_sq(i, j));
double s1s2 = static_cast<float>(sigma12(i, j));
double ssim =
((2.0 * m1m2 + C1) * (2.0 * s1s2 + C2)) /
((m1sq + m2sq + C1) * (s1sq + s2sq + C2));
2013-10-12 20:37:48 +00:00
mssim += ssim;
}
}
2013-10-12 20:37:48 +00:00
return mssim / static_cast<double>(w * h);
}
2013-10-18 08:12:32 +00:00
template<typename PixelType>
double Image<PixelType>::ComputeMeanLocalEntropy() {
const uint32 kKernelSz = 15;
const uint32 kHalfKernelSz = kKernelSz / 2;
Image<IPixel> entropyIdx(GetWidth() - kKernelSz + 1, GetHeight() - kKernelSz + 1);
for(uint32 j = kHalfKernelSz; j < GetHeight() - kHalfKernelSz; j++) {
for(uint32 i = kHalfKernelSz; i < GetWidth() - kHalfKernelSz; i++) {
Image<PixelType> subImg(kKernelSz, kKernelSz);
for(uint32 y = 0; y < kKernelSz; y++)
for(uint32 x = 0; x < kKernelSz; x++) {
subImg(x, y) = (*this)(i - kHalfKernelSz + x, j - kHalfKernelSz + y);
}
entropyIdx(i-kHalfKernelSz, j-kHalfKernelSz) =
static_cast<float>(subImg.ComputeEntropy());
}
}
double sum = 0;
for(uint32 j = 0; j < entropyIdx.GetHeight(); j++)
for(uint32 i = 0; i < entropyIdx.GetWidth(); i++) {
sum += static_cast<float>(entropyIdx(i, j));
}
return sum / (entropyIdx.GetHeight() * entropyIdx.GetWidth());
}
template<typename PixelType>
double Image<PixelType>::ComputeEntropy() {
uint32 hist[256];
memset(hist, 0, sizeof(hist));
ComputePixels();
Image<IPixel> intensity(GetWidth(), GetHeight());
ConvertTo(intensity);
for(uint32 j = 0; j < GetHeight(); j++) {
for(uint32 i = 0; i < GetWidth(); i++) {
float iflt = static_cast<float>(intensity(i, j));
uint32 iv = static_cast<uint32>(iflt * 255.0f + 0.5f);
assert(iv < 256);
hist[iv]++;
}
}
double ret = 0;
for(uint32 i = 0; i < 256; i++) {
if(hist[i] > 0) {
float p = static_cast<float>(hist[i]) / static_cast<float>(GetHeight() * GetWidth());
ret += p * log2(p);
}
}
return -ret;
}
template<typename PixelType>
void Image<PixelType>::SetImageData(uint32 width, uint32 height, PixelType *data) {
if(m_Pixels) {
delete m_Pixels;
}
if(!data) {
width = 0;
height = 0;
m_Pixels = NULL;
} else {
m_Width = width;
m_Height = height;
m_Pixels = data;
}
}
2013-10-10 23:36:19 +00:00
template<typename T>
static inline T Clamp(const T &v, const T &a, const T &b) {
return ::std::min(::std::max(a, v), b);
}
template<typename PixelType>
void Image<PixelType>::Filter(const Image<IPixel> &kernel) {
Image<IPixel> k(kernel);
// Only odd sized filters make sense....
assert(k.GetWidth() % 2);
assert(k.GetHeight() % 2);
double sum = 0.0;
for(uint32 j = 0; j < k.GetHeight(); j++) {
for(uint32 i = 0; i < k.GetWidth(); i++) {
sum += static_cast<float>(k(i, j));
}
}
for(uint32 j = 0; j < k.GetHeight(); j++) {
for(uint32 i = 0; i < k.GetWidth(); i++) {
k(i, j) = static_cast<float>(k(i, j) / sum);
2013-10-10 23:36:19 +00:00
}
}
int32 ih = static_cast<int32>(GetHeight());
int32 iw = static_cast<int32>(GetWidth());
int32 kh = static_cast<int32>(k.GetHeight());
int32 kw = static_cast<int32>(k.GetWidth());
Image<PixelType> filtered(iw, ih);
for(int32 j = 0; j < ih; j++) {
for(int32 i = 0; i < iw; i++) {
int32 yoffset = j - (k.GetHeight() / 2);
int32 xoffset = i - (k.GetWidth() / 2);
Color newPixel;
for(int32 y = 0; y < kh; y++) {
for(int32 x = 0; x < kw; x++) {
PixelType pixel = ((*this)(
Clamp<int32>(x + xoffset, 0, GetWidth() - 1),
Clamp<int32>(y + yoffset, 0, GetHeight() - 1)));
Color c; c.Unpack(pixel.Pack());
Color scaled = c * static_cast<float>(k(x, y));
newPixel += scaled;
}
}
filtered(i, j).Unpack(newPixel.Pack());
}
}
*this = filtered;
}
template class Image<Pixel>;
template class Image<IPixel>;
2013-10-08 22:38:11 +00:00
template class Image<Color>;
void GenerateGaussianKernel(Image<IPixel> &out, uint32 size, float sigma) {
assert(size % 2);
out = Image<IPixel>(size, size);
if(size == 1) {
out(0, 0) = 1.0f;
return;
}
int32 halfSz = static_cast<int32>(size) / 2;
2013-10-12 01:38:49 +00:00
for(int32 j = -halfSz; j <= halfSz; j++) {
for(int32 i = -halfSz; i <= halfSz; i++) {
out(halfSz + i, halfSz + j) = exp(- (j*j + i*i) / (2*sigma*sigma));
}
}
}
} // namespace FasTC