FasTC/PVRTCEncoder/src/Compressor.cpp

281 lines
9.1 KiB
C++
Raw Normal View History

2013-09-13 17:10:22 +00:00
/* FasTC
* Copyright (c) 2013 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#include "PVRTCCompressor.h"
2013-09-25 00:35:36 +00:00
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
2013-09-13 17:10:22 +00:00
#include "Pixel.h"
#include "Image.h"
2013-09-25 00:35:36 +00:00
#include "Block.h"
2013-09-13 17:10:22 +00:00
namespace PVRTCC {
2013-09-25 00:35:36 +00:00
static uint32 Interleave(uint16 inx, uint16 iny) {
// Taken from:
// http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
static const uint32 B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF};
static const uint32 S[] = {1, 2, 4, 8};
uint32 x = static_cast<uint32>(inx);
uint32 y = static_cast<uint32>(iny);
x = (x | (x << S[3])) & B[3];
x = (x | (x << S[2])) & B[2];
x = (x | (x << S[1])) & B[1];
x = (x | (x << S[0])) & B[0];
y = (y | (y << S[3])) & B[3];
y = (y | (y << S[2])) & B[2];
y = (y | (y << S[1])) & B[1];
y = (y | (y << S[0])) & B[0];
return x | (y << 1);
}
template <typename T>
static T Clamp(const T &v, const T &low, const T &high) {
return ::std::min(::std::max(low, v), high);
}
static const Pixel &Lookup(const Image &img,
int32 x, int32 y,
uint32 width, uint32 height,
const EWrapMode wrapMode) {
2013-09-27 21:38:36 +00:00
int32 w = static_cast<int32>(width);
int32 h = static_cast<int32>(height);
assert(w >= 0);
assert(h >= 0);
while(x >= w) {
x = (wrapMode == eWrapMode_Wrap)? x - w : w - 1;
2013-09-25 00:35:36 +00:00
}
while(x < 0) {
2013-09-27 21:38:36 +00:00
x = (wrapMode == eWrapMode_Wrap)? x + w : 0;
2013-09-25 00:35:36 +00:00
}
2013-09-27 21:38:36 +00:00
while(y >= h) {
y = (wrapMode == eWrapMode_Wrap)? y - h : h - 1;
2013-09-25 00:35:36 +00:00
}
while(y < 0) {
2013-09-27 21:38:36 +00:00
y = (wrapMode == eWrapMode_Wrap)? y + h : 0;
2013-09-25 00:35:36 +00:00
}
return img(x, y);
2013-09-25 00:35:36 +00:00
}
void Compress(const CompressionJob &dcj,
2013-09-13 17:10:22 +00:00
bool bTwoBitMode,
const EWrapMode wrapMode) {
Image img(dcj.height, dcj.width);
uint32 nPixels = dcj.height * dcj.width;
for(uint32 i = 0; i < nPixels; i++) {
uint32 x = i % dcj.width;
uint32 y = i / dcj.width;
const uint32 *pixels = reinterpret_cast<const uint32 *>(dcj.inBuf);
img(x, y).UnpackRGBA(pixels[i]);
2013-09-13 17:10:22 +00:00
}
Image original = img;
img.DebugOutput("Original");
2013-09-13 17:10:22 +00:00
// Downscale it using anisotropic diffusion based scheme in order to preserve
// image features, then reupscale and compute deltas. Use deltas to generate
// initial A & B images followed by modulation data.
img.ContentAwareDownscale(1, 1, eWrapMode_Wrap, true);
img.ContentAwareDownscale(1, 1, eWrapMode_Wrap, false);
Image downscaled = img;
// Upscale it again
img.BilinearUpscale(2, 2, eWrapMode_Wrap);
img.DebugOutput("Reconstruction");
// Compute difference...
::std::vector<int16> difference;
2013-09-25 20:37:17 +00:00
difference.resize(dcj.height * dcj.width * 4);
for(uint32 j = 0; j < dcj.height; j++) {
for(uint32 i = 0; i < dcj.width; i++) {
for(uint32 c = 0; c < 4; c++) {
2013-09-25 00:35:36 +00:00
int16 o = original(i, j).Component(c);
int16 n = img(i, j).Component(c);
difference[j*dcj.width*4 + i*4 + c] = o - n;
}
}
}
2013-09-25 00:35:36 +00:00
const uint32 blocksW = dcj.width / 4;
const uint32 blocksH = dcj.height / 4;
2013-09-25 00:35:36 +00:00
// Go over the 7x7 texel blocks and extract bounding box diagonals for each
// block. We should be able to choose which diagonal we want...
2013-09-27 21:38:36 +00:00
const int32 kKernelSz = 7;
2013-09-25 00:35:36 +00:00
Image imgA = downscaled;
Image imgB = downscaled;
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
int32 startX = i*4 + 2 - (kKernelSz / 2);
int32 startY = j*4 + 2 - (kKernelSz / 2);
for(int32 y = startY; y < startY + kKernelSz; y++) {
for(int32 x = startX; x < startX + kKernelSz; x++) {
const Pixel &po = Lookup(original, x, y, dcj.width, dcj.height, wrapMode);
Pixel &pa = imgA(i, j);
Pixel &pb = imgB(i, j);
for(uint32 c = 0; c < 4; c++) {
pa.Component(c) = ::std::max(po.Component(c), pa.Component(c));
pb.Component(c) = ::std::min(po.Component(c), pb.Component(c));
}
}
2013-09-25 00:35:36 +00:00
}
}
}
imgA.DebugOutput("ImageA");
imgB.DebugOutput("ImageB");
// Determine modulation values...
Image upA = imgA;
Image upB = imgB;
upA.BilinearUpscale(2, 2, wrapMode);
upB.BilinearUpscale(2, 2, wrapMode);
assert(upA.GetHeight() == dcj.height && upA.GetWidth() == dcj.width);
assert(upB.GetHeight() == dcj.height && upB.GetWidth() == dcj.width);
upA.DebugOutput("UpscaledA");
upB.DebugOutput("UpscaledB");
// Choose the most appropriate modulation values for the two images...
2013-09-25 20:37:17 +00:00
::std::vector<uint8> modValues;
modValues.resize(dcj.width * dcj.height);
2013-09-25 00:35:36 +00:00
for(uint32 j = 0; j < dcj.height; j++) {
for(uint32 i = 0; i < dcj.width; i++) {
uint8 &mv = modValues[j * dcj.width + i];
const Pixel pa = upA(i, j);
const Pixel pb = upB(i, j);
const Pixel po = original(i, j);
// !FIXME! there are two modulation modes... we're only using one.
uint8 modSteps[4] = { 8, 5, 3, 0 };
2013-09-25 00:35:36 +00:00
uint8 bestMod = 0;
uint32 bestError = 0xFFFFFFFF;
for(uint32 s = 0; s < 4; s++) {
uint32 error = 0;
for(uint32 c = 0; c < 4; c++) {
uint16 va = static_cast<uint16>(pa.Component(c));
uint16 vb = static_cast<uint16>(pb.Component(c));
uint16 vo = static_cast<uint16>(po.Component(c));
uint16 lerpVal = modSteps[s];
uint16 res = (va * (8 - lerpVal) + vb * lerpVal) / 8;
uint16 e = (res > vo)? res - vo : vo - res;
error += e * e;
}
if(error < bestError) {
bestError = error;
2013-09-25 20:37:34 +00:00
bestMod = s;
2013-09-25 00:35:36 +00:00
}
}
mv = bestMod;
}
}
// Pack everything into a PVRTC blocks.
assert(imgA.GetHeight() == blocksH);
assert(imgA.GetWidth() == blocksW);
2013-09-25 00:35:36 +00:00
std::vector<uint64> blocks;
blocks.reserve(blocksW * blocksH);
2013-09-25 00:35:36 +00:00
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
Block b;
b.SetColorA(imgA(i, j), true);
b.SetColorB(imgB(i, j), true);
2013-09-25 00:35:36 +00:00
for(uint32 t = 0; t < 16; t++) {
uint32 x = i*4 + (t%4);
uint32 y = j*4 + (t/4);
2013-09-25 00:35:36 +00:00
b.SetLerpValue(t, modValues[y*dcj.width + x]);
}
blocks.push_back(b.Pack());
}
}
// Spit out the blocks...
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
// The blocks are initially arranged in morton order. Let's
// linearize them...
uint32 idx = Interleave(j, i);
uint64 *outPtr = reinterpret_cast<uint64 *>(dcj.outBuf);
outPtr[idx] = blocks[j*blocksW + i];
2013-09-25 00:35:36 +00:00
}
}
2013-09-13 17:10:22 +00:00
}
} // namespace PVRTCC