mirror of
https://github.com/yuzu-emu/FasTC.git
synced 2025-01-23 19:51:19 +00:00
Very preliminary compressor
This commit is contained in:
parent
8f4dcca4d7
commit
c6d7bdc670
|
@ -52,11 +52,85 @@
|
|||
|
||||
#include "PVRTCCompressor.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "Pixel.h"
|
||||
#include "Image.h"
|
||||
#include "Block.h"
|
||||
|
||||
namespace PVRTCC {
|
||||
|
||||
static uint32 Interleave(uint16 inx, uint16 iny) {
|
||||
// Taken from:
|
||||
// http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
|
||||
|
||||
static const uint32 B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF};
|
||||
static const uint32 S[] = {1, 2, 4, 8};
|
||||
|
||||
uint32 x = static_cast<uint32>(inx);
|
||||
uint32 y = static_cast<uint32>(iny);
|
||||
|
||||
x = (x | (x << S[3])) & B[3];
|
||||
x = (x | (x << S[2])) & B[2];
|
||||
x = (x | (x << S[1])) & B[1];
|
||||
x = (x | (x << S[0])) & B[0];
|
||||
|
||||
y = (y | (y << S[3])) & B[3];
|
||||
y = (y | (y << S[2])) & B[2];
|
||||
y = (y | (y << S[1])) & B[1];
|
||||
y = (y | (y << S[0])) & B[0];
|
||||
|
||||
return x | (y << 1);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T Clamp(const T &v, const T &low, const T &high) {
|
||||
return ::std::min(::std::max(low, v), high);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T Lookup(const T *vals,
|
||||
uint32 x, uint32 y,
|
||||
uint32 width, uint32 height,
|
||||
const EWrapMode wrapMode) {
|
||||
while(x >= width) {
|
||||
if(wrapMode == eWrapMode_Wrap) {
|
||||
x -= width;
|
||||
} else {
|
||||
x = width - 1;
|
||||
}
|
||||
}
|
||||
|
||||
while(x < 0) {
|
||||
if(wrapMode == eWrapMode_Wrap) {
|
||||
x += width;
|
||||
} else {
|
||||
x = 0;
|
||||
}
|
||||
}
|
||||
|
||||
while(y >= height) {
|
||||
if(wrapMode == eWrapMode_Wrap) {
|
||||
y -= height;
|
||||
} else {
|
||||
y = height - 1;
|
||||
}
|
||||
}
|
||||
|
||||
while(y < 0) {
|
||||
if(wrapMode == eWrapMode_Wrap) {
|
||||
y += height;
|
||||
} else {
|
||||
y = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return vals[y * width + x];
|
||||
}
|
||||
|
||||
void Compress(const CompressionJob &dcj,
|
||||
bool bTwoBitMode,
|
||||
const EWrapMode wrapMode) {
|
||||
|
@ -83,9 +157,7 @@ namespace PVRTCC {
|
|||
// image features, then reupscale and compute deltas. Use deltas to generate
|
||||
// initial A & B images followed by modulation data.
|
||||
img.ContentAwareDownscale(1, 1, eWrapMode_Wrap, true);
|
||||
img.DebugOutput("DownscaledOnce");
|
||||
img.ContentAwareDownscale(1, 1, eWrapMode_Wrap, false);
|
||||
img.DebugOutput("DownscaledTwice");
|
||||
|
||||
Image downscaled = img;
|
||||
|
||||
|
@ -95,14 +167,155 @@ namespace PVRTCC {
|
|||
img.DebugOutput("Reconstruction");
|
||||
|
||||
// Compute difference...
|
||||
Image difference = img;
|
||||
int16 difference[dcj.height * dcj.width * 4];
|
||||
for(uint32 j = 0; j < dcj.height; j++) {
|
||||
for(uint32 i = 0; i < dcj.width; i++) {
|
||||
for(uint32 c = 0; c < 4; c++) {
|
||||
difference(i, j).Component(c) -= img(i, j).Component(c);
|
||||
int16 o = original(i, j).Component(c);
|
||||
int16 n = img(i, j).Component(c);
|
||||
difference[j*dcj.width*4 + i*4 + c] = o - n;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Go over the 7x7 texel blocks and extract bounding box diagonals for each
|
||||
// block. We should be able to choose which diagonal we want...
|
||||
const uint32 kKernelSz = 7;
|
||||
int16 maxDiff[dcj.height * dcj.width / 4];
|
||||
int16 minDiff[dcj.height * dcj.width / 4];
|
||||
for(uint32 j = 2; j < dcj.height; j += 4) {
|
||||
for(uint32 i = 2; i < dcj.width; i += 4) {
|
||||
const uint32 startX = i - (kKernelSz / 2);
|
||||
const uint32 startY = j - (kKernelSz / 2);
|
||||
for(uint32 c = 0; c < 4; c++) {
|
||||
int32 pos = 0;
|
||||
int32 neg = 0;
|
||||
for(uint32 y = startY; y < startY + kKernelSz; y++) {
|
||||
for(uint32 x = startX; x < startX + kKernelSz; x++) {
|
||||
int16 val = Lookup(difference, x*4 + c, y, dcj.width*4, dcj.height, wrapMode);
|
||||
if(val > 0) {
|
||||
pos += val;
|
||||
} else {
|
||||
neg += val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint32 blockIdx = ((j-2)/4) * dcj.width + (i-2) + c;
|
||||
assert(blockIdx < (dcj.width * dcj.height) / 4);
|
||||
if(pos > -neg) {
|
||||
maxDiff[blockIdx] = pos;
|
||||
minDiff[blockIdx] = 0;
|
||||
} else {
|
||||
maxDiff[blockIdx] = 0;
|
||||
minDiff[blockIdx] = neg;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add maxDiff to image to get high signal, and lowdiff to image to
|
||||
// get low signal...
|
||||
Image imgA = downscaled;
|
||||
Image imgB = downscaled;
|
||||
|
||||
for(uint32 j = 0; j < dcj.height / 4; j++) {
|
||||
for(uint32 i = 0; i < dcj.width / 4; i++) {
|
||||
for(uint32 c = 0; c < 4; c++) {
|
||||
uint8 &a = imgA(i, j).Component(c);
|
||||
a = Clamp<int16>(a + maxDiff[j*dcj.width/4 + i*4 + c], 0, 255);
|
||||
|
||||
uint8 &b = imgB(i, j).Component(c);
|
||||
b = Clamp<int16>(b + minDiff[j*dcj.width/4 + i*4 + c], 0, 255);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
imgA.DebugOutput("ImageA");
|
||||
imgB.DebugOutput("ImageB");
|
||||
|
||||
// Determine modulation values...
|
||||
Image upA = imgA;
|
||||
Image upB = imgB;
|
||||
|
||||
upA.BilinearUpscale(2, 2, wrapMode);
|
||||
upB.BilinearUpscale(2, 2, wrapMode);
|
||||
|
||||
assert(upA.GetHeight() == dcj.height && upA.GetWidth() == dcj.width);
|
||||
assert(upB.GetHeight() == dcj.height && upB.GetWidth() == dcj.width);
|
||||
|
||||
upA.DebugOutput("UpscaledA");
|
||||
upB.DebugOutput("UpscaledB");
|
||||
|
||||
// Choose the most appropriate modulation values for the two images...
|
||||
std::vector<uint8> modValues;
|
||||
modValues.reserve(dcj.width * dcj.height);
|
||||
for(uint32 j = 0; j < dcj.height; j++) {
|
||||
for(uint32 i = 0; i < dcj.width; i++) {
|
||||
uint8 &mv = modValues[j * dcj.width + i];
|
||||
|
||||
const Pixel pa = upA(i, j);
|
||||
const Pixel pb = upB(i, j);
|
||||
const Pixel po = original(i, j);
|
||||
|
||||
// !FIXME! there are two modulation modes... we're only using one.
|
||||
uint8 modSteps[4] = { 0, 3, 5, 8 };
|
||||
uint8 bestMod = 0;
|
||||
uint32 bestError = 0xFFFFFFFF;
|
||||
for(uint32 s = 0; s < 4; s++) {
|
||||
uint32 error = 0;
|
||||
for(uint32 c = 0; c < 4; c++) {
|
||||
uint16 va = static_cast<uint16>(pa.Component(c));
|
||||
uint16 vb = static_cast<uint16>(pb.Component(c));
|
||||
uint16 vo = static_cast<uint16>(po.Component(c));
|
||||
|
||||
uint16 lerpVal = modSteps[s];
|
||||
uint16 res = (va * (8 - lerpVal) + vb * lerpVal) / 8;
|
||||
uint16 e = (res > vo)? res - vo : vo - res;
|
||||
error += e * e;
|
||||
}
|
||||
|
||||
if(error < bestError) {
|
||||
bestError = error;
|
||||
bestMod = modSteps[s];
|
||||
}
|
||||
}
|
||||
|
||||
mv = bestMod;
|
||||
}
|
||||
}
|
||||
|
||||
// Pack everything into a PVRTC blocks.
|
||||
const uint32 blocksW = dcj.width / 4;
|
||||
const uint32 blocksH = dcj.height / 4;
|
||||
std::vector<uint64> blocks;
|
||||
for(uint32 j = 0; j < blocksH; j++) {
|
||||
for(uint32 i = 0; i < blocksW; i++) {
|
||||
Block b;
|
||||
b.SetColorA(imgA(i, j));
|
||||
b.SetColorB(imgB(i, j));
|
||||
for(uint32 t = 0; t < 16; t++) {
|
||||
uint32 x = i + (t%4);
|
||||
uint32 y = j + (t/4);
|
||||
b.SetLerpValue(t, modValues[y*dcj.width + x]);
|
||||
}
|
||||
blocks.push_back(b.Pack());
|
||||
}
|
||||
}
|
||||
|
||||
// Spit out the blocks...
|
||||
for(uint32 j = 0; j < blocksH; j++) {
|
||||
for(uint32 i = 0; i < blocksW; i++) {
|
||||
|
||||
// The blocks are initially arranged in morton order. Let's
|
||||
// linearize them...
|
||||
uint32 idx = Interleave(j, i);
|
||||
|
||||
uint32 offset = idx * PVRTCC::kBlockSize;
|
||||
uint64 *outPtr = reinterpret_cast<uint64 *>(dcj.outBuf + offset);
|
||||
*outPtr = blocks[j * blocksW + i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PVRTCC
|
||||
|
|
Loading…
Reference in a new issue