FasTC/ASTCEncoder/src/Decompressor.cpp

999 lines
28 KiB
C++
Raw Normal View History

2014-02-27 17:10:51 +00:00
/* FasTC
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#include "ASTCCompressor.h"
#include <algorithm>
2014-02-27 21:19:34 +00:00
#include <cassert>
#include <cstring>
#include <vector>
2014-02-27 17:10:51 +00:00
2014-02-27 21:19:34 +00:00
#include "Utils.h"
#include "IntegerEncoding.h"
2014-02-27 21:19:34 +00:00
#include "TexCompTypes.h"
#include "Bits.h"
2014-02-27 21:19:34 +00:00
#include "BitStream.h"
using FasTC::BitStreamReadOnly;
#include "Pixel.h"
2014-02-27 21:19:34 +00:00
namespace ASTCC {
struct TexelWeightParams {
2014-02-27 21:19:34 +00:00
uint32 m_Width;
uint32 m_Height;
bool m_bDualPlane;
uint32 m_MaxWeight;
bool m_bError;
bool m_bVoidExtent;
TexelWeightParams() {
memset(this, 0, sizeof(*this));
}
uint32 GetPackedBitSize() {
// How many indices do we have?
uint32 nIdxs = m_Height * m_Width;
if(m_bDualPlane) {
nIdxs *= 2;
2014-02-27 21:19:34 +00:00
}
return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs);
2014-02-27 21:19:34 +00:00
}
};
TexelWeightParams DecodeBlockInfo(BitStreamReadOnly &strm) {
TexelWeightParams params;
// Read the entire block mode all at once
uint16 modeBits = strm.ReadBits(11);
// Does this match the void extent block mode?
if((modeBits & 0x01FF) == 0x1FC) {
params.m_bVoidExtent = true;
return params;
}
// First check if the last four bits are zero
2014-03-18 23:37:03 +00:00
if((modeBits & 0xF) == 0) {
2014-02-27 21:19:34 +00:00
params.m_bError = true;
return params;
}
// If the last two bits are zero, then if bits
// [6-8] are all ones, this is also reserved.
2014-03-18 23:37:03 +00:00
if((modeBits & 0x3) == 0 &&
2014-02-27 21:19:34 +00:00
(modeBits & 0x1C0) == 0x1C0) {
params.m_bError = true;
return params;
}
// Otherwise, there is no error... Figure out the layout
// of the block mode. Layout is determined by a number
// between 0 and 9 corresponding to table C.2.8 of the
// ASTC spec.
uint32 layout = 0;
if((modeBits & 0x1) || (modeBits & 0x2)) {
// layout is in [0-4]
if(modeBits & 0x8) {
// layout is in [2-4]
if(modeBits & 0x4) {
// layout is in [3-4]
if(modeBits & 0x100) {
layout = 4;
} else {
layout = 3;
}
} else {
layout = 2;
}
} else {
// layout is in [0-1]
if(modeBits & 0x4) {
layout = 1;
} else {
layout = 0;
}
}
} else {
// layout is in [5-9]
if(modeBits & 0x100) {
// layout is in [7-9]
if(modeBits & 0x80) {
// layout is in [7-8]
assert((modeBits & 0x40) == 0U);
2014-02-27 21:19:34 +00:00
if(modeBits & 0x20) {
layout = 8;
} else {
layout = 7;
}
} else {
layout = 9;
}
} else {
// layout is in [5-6]
if(modeBits & 0x80) {
layout = 6;
} else {
layout = 5;
}
}
}
assert(layout < 10);
// Determine R
uint32 R = !!(modeBits & 0x10);
if(layout < 4) {
R |= (modeBits & 0x3) << 1;
} else {
R |= (modeBits & 0xC) >> 1;
}
assert(2 <= R && R <= 7);
// Determine width & height
switch(layout) {
case 0: {
uint32 A = (modeBits >> 5) & 0x3;
uint32 B = (modeBits >> 7) & 0x3;
params.m_Width = B + 4;
params.m_Height = A + 2;
break;
}
case 1: {
uint32 A = (modeBits >> 5) & 0x3;
uint32 B = (modeBits >> 7) & 0x3;
params.m_Width = B + 8;
params.m_Height = A + 2;
break;
}
case 2: {
uint32 A = (modeBits >> 5) & 0x3;
uint32 B = (modeBits >> 7) & 0x3;
params.m_Width = A + 2;
params.m_Height = B + 8;
break;
}
case 3: {
uint32 A = (modeBits >> 5) & 0x3;
uint32 B = (modeBits >> 7) & 0x1;
params.m_Width = A + 2;
params.m_Height = B + 6;
break;
}
case 4: {
uint32 A = (modeBits >> 5) & 0x3;
uint32 B = (modeBits >> 7) & 0x1;
params.m_Width = B + 2;
params.m_Height = A + 2;
break;
}
case 5: {
uint32 A = (modeBits >> 5) & 0x3;
params.m_Width = 12;
params.m_Height = A + 2;
break;
}
case 6: {
uint32 A = (modeBits >> 5) & 0x3;
params.m_Width = A + 2;
params.m_Height = 12;
break;
}
case 7: {
params.m_Width = 6;
params.m_Height = 10;
break;
}
case 8: {
params.m_Width = 10;
params.m_Height = 6;
break;
}
case 9: {
uint32 A = (modeBits >> 5) & 0x3;
uint32 B = (modeBits >> 9) & 0x3;
params.m_Width = A + 6;
params.m_Height = B + 6;
break;
}
default:
assert(!"Don't know this layout...");
params.m_bError = true;
break;
}
// Determine whether or not we're using dual planes
// and/or high precision layouts.
bool D = (layout != 9) && (modeBits & 0x400);
bool H = (layout != 9) && (modeBits & 0x200);
if(H) {
const uint32 maxWeights[6] = { 9, 11, 15, 19, 23, 31 };
params.m_MaxWeight = maxWeights[R-2];
} else {
const uint32 maxWeights[6] = { 1, 2, 3, 4, 5, 7 };
params.m_MaxWeight = maxWeights[R-2];
}
params.m_bDualPlane = D;
return params;
}
2014-02-27 22:02:38 +00:00
void FillError(uint8 *outBuf, uint32 blockWidth, uint32 blockHeight) {
for(uint32 j = 0; j < blockHeight; j++)
for(uint32 i = 0; i < blockWidth; i++) {
reinterpret_cast<uint32 *>(outBuf)[j * blockWidth + i] = 0xFFFF00FF;
}
}
2014-03-18 23:37:03 +00:00
void DecodeColorValues(uint32 *out, uint8 *data, uint32 *modes,
const uint32 nPartitions, const uint32 nBitsForColorData) {
// First figure out how many color values we have
uint32 nValues = 0;
2014-03-18 23:37:03 +00:00
for(uint32 i = 0; i < nPartitions; i++) {
nValues += ((modes[i]>>2) + 1) << 1;
}
// Then based on the number of values and the remaining number of bits,
// figure out the max value for each of them...
2014-03-18 23:37:03 +00:00
uint32 range = 256;
while(--range > 0) {
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range);
uint32 bitLength = val.GetBitLength(nValues);
if(bitLength < nBitsForColorData) {
// Find the smallest possible range that matches the given encoding
while(--range > 0) {
IntegerEncodedValue newval = IntegerEncodedValue::CreateEncoding(range);
if(!newval.MatchesEncoding(val)) {
break;
}
}
// Return to last matching range.
range++;
break;
}
}
// We now have enough to decode our integer sequence.
std::vector<IntegerEncodedValue> decodedColorValues;
FasTC::BitStreamReadOnly colorStream (data);
IntegerEncodedValue::
DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
// Once we have the decoded values, we need to dequantize them to the 0-255 range
// This procedure is outlined in ASTC spec C.2.13
uint32 outIdx = 0;
std::vector<IntegerEncodedValue>::const_iterator itr;
for(itr = decodedColorValues.begin(); itr != decodedColorValues.end(); itr++) {
2014-03-18 23:37:03 +00:00
// Have we already decoded all that we need?
if(outIdx >= nValues) {
break;
}
const IntegerEncodedValue &val = *itr;
uint32 bitlen = val.BaseBitLength();
uint32 bitval = val.GetBitValue();
assert(bitlen >= 1);
uint32 A = 0, B = 0, C = 0, D = 0;
// A is just the lsb replicated 9 times.
A = FasTC::Replicate(bitval & 1, 1, 9);
switch(val.GetEncoding()) {
// Replicate bits
case eIntegerEncoding_JustBits:
out[outIdx++] = FasTC::Replicate(bitval, bitlen, 8);
break;
// Use algorithm in C.2.13
case eIntegerEncoding_Trit: {
D = val.GetTritValue();
switch(bitlen) {
case 1: {
C = 204;
}
break;
case 2: {
C = 93;
// B = b000b0bb0
uint32 b = (bitval >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
}
break;
case 3: {
C = 44;
// B = cb000cbcb
uint32 cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
}
break;
case 4: {
C = 22;
// B = dcb000dcb
uint32 dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
}
break;
case 5: {
C = 11;
// B = edcb000ed
uint32 edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
}
break;
case 6: {
C = 5;
// B = fedcb000f
uint32 fedcb = (bitval >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
}
break;
default:
assert(!"Unsupported trit encoding for color values!");
break;
} // switch(bitlen)
} // case eIntegerEncoding_Trit
break;
case eIntegerEncoding_Quint: {
D = val.GetQuintValue();
switch(bitlen) {
case 1: {
C = 113;
}
break;
case 2: {
C = 54;
// B = b0000bb00
uint32 b = (bitval >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
}
break;
case 3: {
C = 26;
// B = cb0000cbc
uint32 cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
}
break;
case 4: {
C = 13;
// B = dcb000dcb
uint32 dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
}
break;
case 5: {
C = 6;
// B = edcb0000e
uint32 edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
}
break;
default:
assert(!"Unsupported quint encoding for color values!");
break;
} // switch(bitlen)
} // case eIntegerEncoding_Quint
break;
} // switch(val.GetEncoding())
if(val.GetEncoding() != eIntegerEncoding_JustBits) {
uint32 T = D * C + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
out[outIdx++] = T;
}
}
// Make sure that each of our values is in the proper range...
for(uint32 i = 0; i < nValues; i++) {
assert(out[i] <= 255);
}
}
2014-03-10 22:56:39 +00:00
uint32 UnquantizeTexelWeight(const IntegerEncodedValue &val) {
uint32 bitval = val.GetBitValue();
uint32 bitlen = val.BaseBitLength();
uint32 A = FasTC::Replicate(bitval & 1, 1, 7);
uint32 B = 0, C = 0, D = 0;
uint32 result = 0;
switch(val.GetEncoding()) {
case eIntegerEncoding_JustBits:
result = FasTC::Replicate(bitval, bitlen, 6);
break;
case eIntegerEncoding_Trit: {
D = val.GetTritValue();
assert(D < 3);
switch(bitlen) {
case 0: {
uint32 results[3] = { 0, 32, 63 };
result = results[D];
}
break;
case 1: {
C = 50;
}
break;
case 2: {
C = 23;
uint32 b = (bitval >> 1) & 1;
B = (b << 6) | (b << 2) | b;
}
break;
case 3: {
C = 11;
uint32 cb = (bitval >> 1) & 3;
B = (cb << 5) | cb;
}
break;
default:
assert(!"Invalid trit encoding for texel weight");
break;
}
}
break;
case eIntegerEncoding_Quint: {
D = val.GetQuintValue();
assert(D < 5);
switch(bitlen) {
case 0: {
uint32 results[5] = { 0, 16, 32, 47, 63 };
result = results[D];
}
break;
case 1: {
C = 28;
}
break;
case 2: {
C = 13;
uint32 b = (bitval >> 1) & 1;
B = (b << 6) | (b << 1);
}
break;
default:
assert(!"Invalid quint encoding for texel weight");
break;
}
}
break;
}
if(val.GetEncoding() != eIntegerEncoding_JustBits && bitlen > 0) {
// Decode the value...
result = D * C + B;
result ^= A;
result = (A & 0x20) | (result >> 2);
}
assert(result < 64);
2014-03-10 22:56:39 +00:00
// Change from [0,63] to [0,64]
if(result > 32) {
result += 1;
}
return result;
}
void UnquantizeTexelWeights(uint32 out[2][144],
std::vector<IntegerEncodedValue> &weights,
const TexelWeightParams &params,
const uint32 blockWidth, const uint32 blockHeight) {
uint32 weightIdx = 0;
uint32 unquantized[2][144];
std::vector<IntegerEncodedValue>::const_iterator itr;
for(itr = weights.begin(); itr != weights.end(); itr++) {
unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
if(params.m_bDualPlane) {
itr++;
unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
}
weightIdx++;
}
// Do infill if necessary (Section C.2.18) ...
uint32 Ds = (1024 + (blockWidth/2)) / (blockWidth - 1);
uint32 Dt = (1024 + (blockHeight/2)) / (blockHeight - 1);
2014-04-15 18:18:12 +00:00
for(uint32 plane = 0; plane < (params.m_bDualPlane? 2U : 1U); plane++)
for(uint32 t = 0; t < blockHeight; t++)
for(uint32 s = 0; s < blockWidth; s++) {
uint32 cs = Ds * s;
uint32 ct = Dt * t;
uint32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
uint32 gt = (ct * (params.m_Height - 1) + 32) >> 6;
uint32 js = gs >> 4;
uint32 fs = gs & 0xF;
uint32 jt = gt >> 4;
uint32 ft = gt & 0x0F;
uint32 w11 = (fs * ft + 8) >> 4;
uint32 w10 = ft - w11;
uint32 w01 = fs - w11;
uint32 w00 = 16 - fs - ft + w11;
2014-03-18 23:37:03 +00:00
uint32 v0 = js + jt * params.m_Width;
#define FIND_TEXEL(tidx, bidx) \
uint32 p##bidx = 0; \
do { \
if(w##bidx > 0) { \
assert((tidx) < (params.m_Width * params.m_Height)); \
p##bidx = unquantized[plane][(tidx)]; \
} \
} \
while(0)
FIND_TEXEL(v0, 00);
FIND_TEXEL(v0 + 1, 01);
FIND_TEXEL(v0 + params.m_Width, 10);
FIND_TEXEL(v0 + params.m_Width + 1, 11);
#undef FIND_TEXEL
out[plane][t*blockWidth + s] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
}
}
// Section C.2.14
void ComputeEndpoints(FasTC::Pixel &ep1, FasTC::Pixel &ep2,
const uint32* &colorValues, uint32 colorEndpointMode) {
#define READ_UINT_VALUES(N) \
uint32 v[N]; \
for(uint32 i = 0; i < N; i++) { \
v[i] = *(colorValues++); \
}
#define READ_INT_VALUES(N) \
int32 v[N]; \
for(uint32 i = 0; i < N; i++) { \
v[i] = static_cast<int32>(*(colorValues++)); \
}
switch(colorEndpointMode) {
case 0: {
READ_UINT_VALUES(2)
ep1 = FasTC::Pixel(0xFF, v[0], v[0], v[0]);
ep2 = FasTC::Pixel(0xFF, v[1], v[1], v[1]);
}
break;
case 1: {
READ_UINT_VALUES(2)
uint32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
uint32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
ep1 = FasTC::Pixel(0xFF, L0, L0, L0);
ep2 = FasTC::Pixel(0xFF, L1, L1, L1);
}
break;
case 4: {
READ_UINT_VALUES(4)
ep1 = FasTC::Pixel(v[2], v[0], v[0], v[0]);
ep2 = FasTC::Pixel(v[3], v[1], v[1], v[1]);
}
break;
case 5: {
READ_INT_VALUES(4)
BitTransferSigned(v[1], v[0]);
BitTransferSigned(v[3], v[2]);
ep1 = FasTC::Pixel(v[2], v[0], v[0], v[0]);
ep2 = FasTC::Pixel(v[2]+v[3], v[0]+v[1], v[0]+v[1], v[0]+v[1]);
ep1.ClampByte();
ep2.ClampByte();
}
break;
case 6: {
READ_UINT_VALUES(4)
ep1 = FasTC::Pixel(0xFF, v[0]*v[3] >> 8, v[1]*v[3] >> 8, v[2]*v[3] >> 8);
ep2 = FasTC::Pixel(0xFF, v[0], v[1], v[2]);
}
break;
case 8: {
READ_UINT_VALUES(6)
if(v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) {
ep1 = FasTC::Pixel(0xFF, v[0], v[2], v[4]);
ep2 = FasTC::Pixel(0xFF, v[1], v[3], v[5]);
} else {
ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
}
}
break;
case 9: {
READ_INT_VALUES(6)
BitTransferSigned(v[1], v[0]);
BitTransferSigned(v[3], v[2]);
BitTransferSigned(v[5], v[4]);
if(v[1]+v[3]+v[5] >= 0) {
ep1 = FasTC::Pixel(0xFF, v[0], v[2], v[4]);
ep2 = FasTC::Pixel(0xFF, v[0]+v[1], v[2]+v[3], v[4]+v[5]);
} else {
ep1 = BlueContract(0xFF, v[0]+v[1], v[2]+v[3], v[4]+v[5]);
ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
}
ep1.ClampByte();
ep2.ClampByte();
}
break;
case 10: {
READ_UINT_VALUES(6)
ep1 = FasTC::Pixel(v[4], v[0]*v[3] >> 8, v[1]*v[3] >> 8, v[2]*v[3] >> 8);
ep2 = FasTC::Pixel(v[5], v[0], v[1], v[2]);
}
break;
case 12: {
READ_UINT_VALUES(8)
if(v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) {
ep1 = FasTC::Pixel(v[6], v[0], v[2], v[4]);
ep2 = FasTC::Pixel(v[7], v[1], v[3], v[5]);
} else {
ep1 = BlueContract(v[7], v[1], v[3], v[5]);
ep2 = BlueContract(v[6], v[0], v[2], v[4]);
}
}
break;
case 13: {
READ_INT_VALUES(8)
BitTransferSigned(v[1], v[0]);
BitTransferSigned(v[3], v[2]);
BitTransferSigned(v[5], v[4]);
BitTransferSigned(v[7], v[6]);
if(v[1]+v[3]+v[5] >= 0) {
ep1 = FasTC::Pixel(v[6], v[0], v[2], v[4]);
ep2 = FasTC::Pixel(v[7]+v[6], v[0]+v[1], v[2]+v[3], v[4]+v[5]);
} else {
ep1 = BlueContract(v[6]+v[7], v[0]+v[1], v[2]+v[3], v[4]+v[5]);
ep2 = BlueContract(v[6], v[0], v[2], v[4]);
}
ep1.ClampByte();
ep2.ClampByte();
}
break;
default:
assert(!"Unsupported color endpoint mode (is it HDR?)");
break;
}
#undef READ_UINT_VALUES
#undef READ_INT_VALUES
2014-03-10 22:56:39 +00:00
}
2014-02-27 21:19:34 +00:00
void DecompressBlock(const uint8 inBuf[16],
const uint32 blockWidth, const uint32 blockHeight,
uint8 *outBuf) {
BitStreamReadOnly strm(inBuf);
TexelWeightParams weightParams = DecodeBlockInfo(strm);
2014-03-01 00:04:25 +00:00
// Was there an error?
if(weightParams.m_bError) {
assert(!"Invalid block mode");
FillError(outBuf, blockWidth, blockHeight);
return;
}
2014-02-27 22:02:38 +00:00
if(weightParams.m_Width > blockWidth) {
assert(!"Texel weight grid width should be smaller than block width");
FillError(outBuf, blockWidth, blockHeight);
return;
}
if(weightParams.m_Height > blockHeight) {
assert(!"Texel weight grid height should be smaller than block height");
FillError(outBuf, blockWidth, blockHeight);
return;
}
// Read num partitions
uint32 nPartitions = strm.ReadBits(2) + 1;
assert(nPartitions <= 4);
if(nPartitions == 4 && weightParams.m_bDualPlane) {
assert(!"Dual plane mode is incompatible with four partition blocks");
FillError(outBuf, blockWidth, blockHeight);
return;
}
// Based on the number of partitions, read the color endpoint mode for
// each partition.
// Determine partitions, partition index, and color endpoint modes
int32 planeIdx = -1;
2014-02-27 22:02:38 +00:00
uint32 partitionIndex = nPartitions;
uint32 colorEndpointMode[4] = {0, 0, 0, 0};
// Define color data.
uint8 colorEndpointData[16];
memset(colorEndpointData, 0, sizeof(colorEndpointData));
FasTC::BitStream colorEndpointStream (colorEndpointData, 16*8, 0);
// Read extra config data...
uint32 baseCEM = 0;
2014-02-27 22:02:38 +00:00
if(nPartitions == 1) {
colorEndpointMode[0] = strm.ReadBits(4);
} else {
uint32 restOfPartitionIndex = strm.ReadBits(10);
partitionIndex |= restOfPartitionIndex << 2;
baseCEM = strm.ReadBits(6);
}
uint32 baseMode = (baseCEM & 3);
// Remaining bits are color endpoint data...
uint32 nWeightBits = weightParams.GetPackedBitSize();
int32 remainingBits = 128 - nWeightBits - strm.GetBitsRead();
// Consider extra bits prior to texel data...
uint32 extraCEMbits = 0;
if(baseMode) {
switch(nPartitions) {
case 2: extraCEMbits += 2; break;
case 3: extraCEMbits += 5; break;
case 4: extraCEMbits += 8; break;
default: assert(false); break;
}
}
remainingBits -= extraCEMbits;
2014-02-27 22:02:38 +00:00
// Do we have a dual plane situation?
uint32 planeSelectorBits = 0;
if(weightParams.m_bDualPlane) {
planeSelectorBits = 2;
}
remainingBits -= planeSelectorBits;
// Read color data...
uint32 colorDataBits = remainingBits;
while(remainingBits > 0) {
uint32 nb = std::min(remainingBits, 8);
uint32 b = strm.ReadBits(nb);
colorEndpointStream.WriteBits(b, nb);
remainingBits -= 8;
}
// Read the plane selection bits
planeIdx = strm.ReadBits(planeSelectorBits);
// Read the rest of the CEM
if(baseMode) {
uint32 extraCEM = strm.ReadBits(extraCEMbits);
uint32 CEM = (extraCEM << 6) | baseCEM;
CEM >>= 2;
bool C[4] = { 0 };
for(uint32 i = 0; i < nPartitions; i++) {
C[i] = CEM & 1;
CEM >>= 1;
}
uint8 M[4] = { 0 };
2014-02-27 22:02:38 +00:00
for(uint32 i = 0; i < nPartitions; i++) {
M[i] = CEM & 3;
CEM >>= 2;
assert(M[i] <= 3);
2014-02-27 22:02:38 +00:00
}
for(uint32 i = 0; i < nPartitions; i++) {
colorEndpointMode[i] = baseMode;
if(!(C[i])) colorEndpointMode[i] -= 1;
2014-02-27 22:02:38 +00:00
colorEndpointMode[i] <<= 2;
colorEndpointMode[i] |= M[i];
}
} else if(nPartitions > 1) {
uint32 CEM = baseCEM >> 2;
for(uint32 i = 0; i < nPartitions; i++) {
colorEndpointMode[i] = CEM;
2014-02-27 22:02:38 +00:00
}
}
2014-02-27 21:19:34 +00:00
// Make sure everything up till here is sane.
for(uint32 i = 0; i < nPartitions; i++) {
assert(colorEndpointMode[i] < 16);
}
assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
// Read the texel weight data..
uint8 texelWeightData[16];
memset(texelWeightData, 0, sizeof(texelWeightData));
FasTC::BitStream texelWeightStream (texelWeightData, 16*8, 0);
2014-02-27 21:19:34 +00:00
int32 texelWeightBits = weightParams.GetPackedBitSize();
while(texelWeightBits > 0) {
uint32 nb = std::min(texelWeightBits, 8);
uint32 b = strm.ReadBits(nb);
texelWeightStream.WriteBits(b, nb);
texelWeightBits -= 8;
}
assert(strm.GetBitsRead() == 128);
// Decode both color data and texel weight data
uint32 colorValues[32]; // Four values, two endpoints, four maximum paritions
2014-03-18 23:37:03 +00:00
DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode,
nPartitions, colorDataBits);
std::vector<IntegerEncodedValue> texelWeightValues;
FasTC::BitStreamReadOnly weightStream (texelWeightData);
IntegerEncodedValue::
DecodeIntegerSequence(texelWeightValues, weightStream,
weightParams.m_MaxWeight,
weightParams.m_Width * weightParams.m_Height);
2014-03-10 22:56:39 +00:00
FasTC::Pixel endpoints[4][2];
const uint32 *colorValuesPtr = colorValues;
for(uint32 i = 0; i < nPartitions; i++) {
ComputeEndpoints(endpoints[i][0], endpoints[i][1],
colorValuesPtr, colorEndpointMode[i]);
}
2014-03-10 22:56:39 +00:00
// Blocks can be at most 12x12, so we can have as many as 144 weights
uint32 weights[2][144];
UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
// Now that we have endpoints and weights, we can interpolate and generate
// the proper decoding...
for(uint32 j = 0; j < blockHeight; j++)
for(uint32 i = 0; i < blockWidth; i++) {
uint32 partition = Select2DPartition(
partitionIndex, i, j, nPartitions, (blockHeight * blockWidth) < 32
);
if(nPartitions == 1) {
partition = 0;
}
assert(partition < nPartitions);
FasTC::Pixel p;
for(uint32 c = 0; c < 4; c++) {
uint32 C0 = endpoints[partition][0].Component(c);
C0 = FasTC::Replicate(C0, 8, 16);
uint32 C1 = endpoints[partition][1].Component(c);
C1 = FasTC::Replicate(C1, 8, 16);
uint32 plane = 0;
if(weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
plane = 1;
}
uint32 weight = weights[plane][j * blockWidth + i];
uint32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
p.Component(c) = C >> 8;
}
outBuf[j * blockWidth + i] = p.Pack();
}
2014-02-27 21:19:34 +00:00
}
void Decompress(const FasTC::DecompressionJob &dcj) {
uint32 blockWidth = GetBlockWidth(dcj.Format());
uint32 blockHeight = GetBlockHeight(dcj.Format());
2014-02-27 21:19:34 +00:00
uint32 blockIdx = 0;
2014-03-18 23:37:03 +00:00
for(uint32 j = 0; j < dcj.Width(); j+=blockHeight) {
for(uint32 i = 0; i < dcj.Height(); i+=blockWidth) {
2014-02-27 22:02:38 +00:00
2014-02-27 21:19:34 +00:00
const uint8 *blockPtr = dcj.InBuf() + blockIdx*16;
2014-02-27 22:02:38 +00:00
// Blocks can be at most 12x12
2014-02-27 22:02:38 +00:00
uint32 uncompData[144];
uint8 *dataPtr = reinterpret_cast<uint8 *>(uncompData);
2014-02-27 21:19:34 +00:00
DecompressBlock(blockPtr, blockWidth, blockHeight, dataPtr);
2014-02-27 22:02:38 +00:00
uint8 *outRow = dcj.OutBuf() + (j*dcj.Width() + i)*4;
for(uint32 jj = 0; jj < blockHeight; jj++) {
memcpy(outRow + jj*dcj.Width()*4, uncompData + jj*blockWidth, blockWidth*4);
}
2014-02-27 21:19:34 +00:00
blockIdx++;
}
}
2014-02-27 17:10:51 +00:00
}
2014-02-27 21:19:34 +00:00
} // namespace ASTCC