mirror of
https://github.com/yuzu-emu/FasTC.git
synced 2025-01-07 01:55:37 +00:00
Add power method iteration for square matrices
This commit is contained in:
parent
7ed5c13405
commit
2af172e5e5
|
@ -35,11 +35,58 @@ namespace FasTC {
|
|||
|
||||
// Constructors
|
||||
MatrixSquare() { }
|
||||
MatrixSquare(const MatrixBase<T, N, N> &other) {
|
||||
for(int i = 0; i < kNumElements; i++) {
|
||||
mat[i] = other[i];
|
||||
MatrixSquare(const MatrixSquare<T, N> &other)
|
||||
: MatrixBase<T, N, N>(other) { }
|
||||
MatrixSquare(const MatrixBase<T, N, N> &other)
|
||||
: MatrixBase<T, N, N>(other) { }
|
||||
|
||||
// Does power iteration to determine the principal eigenvector and eigenvalue.
|
||||
// Returns them in eigVec and eigVal after kMaxNumIterations
|
||||
int PowerMethod(VectorBase<T, N> &eigVec, T *eigVal = NULL,
|
||||
const int kMaxNumIterations = 200) {
|
||||
int numIterations = 0;
|
||||
|
||||
// !SPEED! Find eigenvectors by using the power method. This is good because the
|
||||
// matrix is only 4x4, which allows us to use SIMD...
|
||||
VectorBase<T, N> b;
|
||||
for(int i = 0; i < N; i++)
|
||||
b[i] = T(1.0);
|
||||
|
||||
b /= b.Length();
|
||||
|
||||
bool fixed = false;
|
||||
numIterations = 0;
|
||||
while(!fixed && ++numIterations < kMaxNumIterations) {
|
||||
|
||||
VectorBase<T, N> newB = (*this).operator*(b);
|
||||
|
||||
// !HACK! If the principal eigenvector of the covariance matrix
|
||||
// converges to zero, that means that the points lie equally
|
||||
// spaced on a sphere in this space. In this (extremely rare)
|
||||
// situation, just choose a point and use it as the principal
|
||||
// direction.
|
||||
const float newBlen = newB.Length();
|
||||
if(newBlen < 1e-10) {
|
||||
eigVec = b;
|
||||
if(eigVal) *eigVal = 0.0;
|
||||
return numIterations;
|
||||
}
|
||||
|
||||
T len = newB.Length();
|
||||
newB /= len;
|
||||
if(eigVal)
|
||||
*eigVal = len;
|
||||
|
||||
if(fabs(1.0f - (b.Dot(newB))) < 1e-5)
|
||||
fixed = true;
|
||||
|
||||
b = newB;
|
||||
}
|
||||
|
||||
eigVec = b;
|
||||
return numIterations;
|
||||
}
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in a new issue