Very preliminary compressor

This commit is contained in:
Pavel Krajcevski 2013-09-24 20:35:36 -04:00
parent 8f4dcca4d7
commit c6d7bdc670

View file

@ -52,11 +52,85 @@
#include "PVRTCCompressor.h"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
#include "Pixel.h"
#include "Image.h"
#include "Block.h"
namespace PVRTCC {
static uint32 Interleave(uint16 inx, uint16 iny) {
// Taken from:
// http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
static const uint32 B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF};
static const uint32 S[] = {1, 2, 4, 8};
uint32 x = static_cast<uint32>(inx);
uint32 y = static_cast<uint32>(iny);
x = (x | (x << S[3])) & B[3];
x = (x | (x << S[2])) & B[2];
x = (x | (x << S[1])) & B[1];
x = (x | (x << S[0])) & B[0];
y = (y | (y << S[3])) & B[3];
y = (y | (y << S[2])) & B[2];
y = (y | (y << S[1])) & B[1];
y = (y | (y << S[0])) & B[0];
return x | (y << 1);
}
template <typename T>
static T Clamp(const T &v, const T &low, const T &high) {
return ::std::min(::std::max(low, v), high);
}
template <typename T>
static T Lookup(const T *vals,
uint32 x, uint32 y,
uint32 width, uint32 height,
const EWrapMode wrapMode) {
while(x >= width) {
if(wrapMode == eWrapMode_Wrap) {
x -= width;
} else {
x = width - 1;
}
}
while(x < 0) {
if(wrapMode == eWrapMode_Wrap) {
x += width;
} else {
x = 0;
}
}
while(y >= height) {
if(wrapMode == eWrapMode_Wrap) {
y -= height;
} else {
y = height - 1;
}
}
while(y < 0) {
if(wrapMode == eWrapMode_Wrap) {
y += height;
} else {
y = 0;
}
}
return vals[y * width + x];
}
void Compress(const CompressionJob &dcj,
bool bTwoBitMode,
const EWrapMode wrapMode) {
@ -83,9 +157,7 @@ namespace PVRTCC {
// image features, then reupscale and compute deltas. Use deltas to generate
// initial A & B images followed by modulation data.
img.ContentAwareDownscale(1, 1, eWrapMode_Wrap, true);
img.DebugOutput("DownscaledOnce");
img.ContentAwareDownscale(1, 1, eWrapMode_Wrap, false);
img.DebugOutput("DownscaledTwice");
Image downscaled = img;
@ -95,14 +167,155 @@ namespace PVRTCC {
img.DebugOutput("Reconstruction");
// Compute difference...
Image difference = img;
int16 difference[dcj.height * dcj.width * 4];
for(uint32 j = 0; j < dcj.height; j++) {
for(uint32 i = 0; i < dcj.width; i++) {
for(uint32 c = 0; c < 4; c++) {
difference(i, j).Component(c) -= img(i, j).Component(c);
int16 o = original(i, j).Component(c);
int16 n = img(i, j).Component(c);
difference[j*dcj.width*4 + i*4 + c] = o - n;
}
}
}
// Go over the 7x7 texel blocks and extract bounding box diagonals for each
// block. We should be able to choose which diagonal we want...
const uint32 kKernelSz = 7;
int16 maxDiff[dcj.height * dcj.width / 4];
int16 minDiff[dcj.height * dcj.width / 4];
for(uint32 j = 2; j < dcj.height; j += 4) {
for(uint32 i = 2; i < dcj.width; i += 4) {
const uint32 startX = i - (kKernelSz / 2);
const uint32 startY = j - (kKernelSz / 2);
for(uint32 c = 0; c < 4; c++) {
int32 pos = 0;
int32 neg = 0;
for(uint32 y = startY; y < startY + kKernelSz; y++) {
for(uint32 x = startX; x < startX + kKernelSz; x++) {
int16 val = Lookup(difference, x*4 + c, y, dcj.width*4, dcj.height, wrapMode);
if(val > 0) {
pos += val;
} else {
neg += val;
}
}
}
uint32 blockIdx = ((j-2)/4) * dcj.width + (i-2) + c;
assert(blockIdx < (dcj.width * dcj.height) / 4);
if(pos > -neg) {
maxDiff[blockIdx] = pos;
minDiff[blockIdx] = 0;
} else {
maxDiff[blockIdx] = 0;
minDiff[blockIdx] = neg;
}
}
}
}
// Add maxDiff to image to get high signal, and lowdiff to image to
// get low signal...
Image imgA = downscaled;
Image imgB = downscaled;
for(uint32 j = 0; j < dcj.height / 4; j++) {
for(uint32 i = 0; i < dcj.width / 4; i++) {
for(uint32 c = 0; c < 4; c++) {
uint8 &a = imgA(i, j).Component(c);
a = Clamp<int16>(a + maxDiff[j*dcj.width/4 + i*4 + c], 0, 255);
uint8 &b = imgB(i, j).Component(c);
b = Clamp<int16>(b + minDiff[j*dcj.width/4 + i*4 + c], 0, 255);
}
}
}
imgA.DebugOutput("ImageA");
imgB.DebugOutput("ImageB");
// Determine modulation values...
Image upA = imgA;
Image upB = imgB;
upA.BilinearUpscale(2, 2, wrapMode);
upB.BilinearUpscale(2, 2, wrapMode);
assert(upA.GetHeight() == dcj.height && upA.GetWidth() == dcj.width);
assert(upB.GetHeight() == dcj.height && upB.GetWidth() == dcj.width);
upA.DebugOutput("UpscaledA");
upB.DebugOutput("UpscaledB");
// Choose the most appropriate modulation values for the two images...
std::vector<uint8> modValues;
modValues.reserve(dcj.width * dcj.height);
for(uint32 j = 0; j < dcj.height; j++) {
for(uint32 i = 0; i < dcj.width; i++) {
uint8 &mv = modValues[j * dcj.width + i];
const Pixel pa = upA(i, j);
const Pixel pb = upB(i, j);
const Pixel po = original(i, j);
// !FIXME! there are two modulation modes... we're only using one.
uint8 modSteps[4] = { 0, 3, 5, 8 };
uint8 bestMod = 0;
uint32 bestError = 0xFFFFFFFF;
for(uint32 s = 0; s < 4; s++) {
uint32 error = 0;
for(uint32 c = 0; c < 4; c++) {
uint16 va = static_cast<uint16>(pa.Component(c));
uint16 vb = static_cast<uint16>(pb.Component(c));
uint16 vo = static_cast<uint16>(po.Component(c));
uint16 lerpVal = modSteps[s];
uint16 res = (va * (8 - lerpVal) + vb * lerpVal) / 8;
uint16 e = (res > vo)? res - vo : vo - res;
error += e * e;
}
if(error < bestError) {
bestError = error;
bestMod = modSteps[s];
}
}
mv = bestMod;
}
}
// Pack everything into a PVRTC blocks.
const uint32 blocksW = dcj.width / 4;
const uint32 blocksH = dcj.height / 4;
std::vector<uint64> blocks;
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
Block b;
b.SetColorA(imgA(i, j));
b.SetColorB(imgB(i, j));
for(uint32 t = 0; t < 16; t++) {
uint32 x = i + (t%4);
uint32 y = j + (t/4);
b.SetLerpValue(t, modValues[y*dcj.width + x]);
}
blocks.push_back(b.Pack());
}
}
// Spit out the blocks...
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
// The blocks are initially arranged in morton order. Let's
// linearize them...
uint32 idx = Interleave(j, i);
uint32 offset = idx * PVRTCC::kBlockSize;
uint64 *outPtr = reinterpret_cast<uint64 *>(dcj.outBuf + offset);
*outPtr = blocks[j * blocksW + i];
}
}
}
} // namespace PVRTCC