Change signature and semantics of mbedtls_rsa_deduce_moduli

Input arguments are marked as constant. Further, no double-checking is performed when a factorization of the modulus has
been found.
This commit is contained in:
Hanno Becker 2017-10-02 09:55:49 +01:00
parent 56bae95e1d
commit ba5b755f1a
2 changed files with 21 additions and 48 deletions

View file

@ -96,23 +96,13 @@ extern "C" {
*
* \return
* - 0 if successful. In this case, P and Q constitute a
* factorization of N, and it is guaranteed that D and E
* are indeed modular inverses modulo P-1 and modulo Q-1.
* The values of N, D and E are unchanged. It is checked
* that P, Q are prime if a PRNG is provided.
* - A non-zero error code otherwise. In this case, the values
* of N, D, E are undefined.
* factorization of N.
* - A non-zero error code otherwise.
*
* \note The input MPI's are deliberately not declared as constant
* and may therefore be used for in-place calculations by
* the implementation. In particular, their values can be
* corrupted when the function fails. If the user cannot
* tolerate this, he has to make copies of the MPI's prior
* to calling this function. See \c mbedtls_mpi_copy for this.
*/
int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
mbedtls_mpi *P, mbedtls_mpi *Q );
int mbedtls_rsa_deduce_moduli( mbedtls_mpi const *N, mbedtls_mpi const *D,
mbedtls_mpi const *E, int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng, mbedtls_mpi *P, mbedtls_mpi *Q );
/**
* \brief Compute RSA private exponent from

View file

@ -129,20 +129,11 @@ static void mbedtls_zeroize( void *v, size_t n ) {
* of (a) and (b) above to attempt to factor N.
*
*/
int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E,
int mbedtls_rsa_deduce_moduli( mbedtls_mpi const *N,
mbedtls_mpi const *D, mbedtls_mpi const *E,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
mbedtls_mpi *P, mbedtls_mpi *Q )
{
/* Implementation note:
*
* Space-efficiency is given preference over time-efficiency here:
* several calculations are done in place and temporarily change
* the values of D and E.
*
* Specifically, D is replaced by the largest odd divisor of DE - 1
* throughout the calculations.
*/
int ret = 0;
uint16_t attempt; /* Number of current attempt */
@ -151,11 +142,9 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E,
uint16_t bitlen_half; /* Half the bitsize of the modulus N */
uint16_t order; /* Order of 2 in DE - 1 */
mbedtls_mpi K; /* Temporary used for two purposes:
* - During factorization attempts, stores a random integer
* in the range of [0,..,N]
* - During verification, holding intermediate results.
*/
mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */
mbedtls_mpi K; /* During factorization attempts, stores a random integer
* in the range of [0,..,N] */
if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
@ -174,20 +163,20 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E,
*/
mbedtls_mpi_init( &K );
mbedtls_mpi_init( &T );
/* Replace D by DE - 1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( D, D, E ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( D, D, 1 ) );
/* T := DE - 1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
if( ( order = mbedtls_mpi_lsb( D ) ) == 0 )
if( ( order = mbedtls_mpi_lsb( &T ) ) == 0 )
{
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
goto cleanup;
}
/* After this operation, D holds the largest odd divisor
* of DE - 1 for the original values of D and E. */
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( D, order ) );
/* After this operation, T holds the largest odd divisor of DE - 1. */
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
/* This is used to generate a few numbers around N / 2
* if no PRNG is provided. */
@ -220,9 +209,9 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E,
if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
continue;
/* Go through K^X + 1, K^(2X) + 1, K^(4X) + 1, ...
/* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
* and check whether they have nontrivial GCD with N. */
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, D, N,
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
Q /* temporarily use Q for storing Montgomery
* multiplication helper values */ ) );
@ -239,14 +228,7 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E,
* Set Q := N / P.
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, &K, N, P ) );
/* Restore D */
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( D, order ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( D, D, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( D, NULL, D, E ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
goto cleanup;
}
@ -261,6 +243,7 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E,
cleanup:
mbedtls_mpi_free( &K );
mbedtls_mpi_free( &T );
return( ret );
}