To prevent dropping the same message over and over again, the UDP proxy
test application programs/test/udp_proxy _logically_ maintains a mapping
from records to the number of times the record has already been dropped,
and stops dropping once a configurable threshold (currently 2) is passed.
However, the actual implementation deviates from this logical view
in two crucial respects:
- To keep the implementation simple and independent of
implementations of suitable map interfaces, it only counts how
many times a record of a given _size_ has been dropped, and
stops dropping further records of that size once the configurable
threshold is passed. Of course, this is not fail-proof, but a
good enough approximation for the proxy, and it allows to use
an inefficient but simple array for the required map.
- The implementation mixes datagram lengths and record lengths:
When deciding whether it is allowed to drop a datagram, it
uses the total datagram size as a lookup index into the map
counting the number of times a package has been dropped. However,
when updating this map, the UDP proxy traverses the datagram
record by record, and updates the mapping at the level of record
lengths.
Apart from this inconsistency, the introduction of the Connection ID
feature leads to yet another problem: The CID length is not part of
the record header but dynamically negotiated during (potentially
encrypted!) handshakes, and it is hence impossible for a passive traffic
analyzer (in this case our UDP proxy) to reliably parse record headers;
especially, it isn't possible to reliably infer the length of a record,
nor to dissect a datagram into records.
The previous implementation of the UDP proxy was not CID-aware and
assumed that the record length would always reside at offsets 11, 12
in the DTLS record header, which would allow it to iterate through
the datagram record by record. As mentioned, this is no longer possible
for CID-based records, and the current implementation can run into
a buffer overflow in this case (because it doesn't validate that
the record length is not larger than what remains in the datagram).
This commit removes the inconsistency in datagram vs. record length
and resolves the buffer overflow issue by not attempting any dissection
of datagrams into records, and instead only counting how often _datagrams_
of a particular size have been dropped.
There is only one practical situation where this makes a difference:
If datagram packing is used by default but disabled on retransmission
(which OpenSSL has been seen to do), it can happen that we drop a
datagram in its initial transmission, then also drop some of its records
when they retransmitted one-by-one afterwards, yet still keeping the
drop-counter at 1 instead of 2. However, even in this situation, we'll
correctly count the number of droppings from that point on and eventually
stop dropping, because the peer will not fall back to using packing
and hence use stable record lengths.
This commit adds the command line option 'bad_cid' to the UDP proxy
`./programs/test/udp_proxy`. It takes a non-negative integral value N,
which if not 0 has the effect of duplicating every 1:N CID records
and modifying the CID in the first copy sent.
This is to exercise the stacks documented behaviour on receipt
of unexpected CIDs.
It is important to send the record with the unexpected CID first,
because otherwise the packet would be dropped already during
replay protection (the same holds for the implementation of the
existing 'bad_ad' option).
This commit modifies mbedtls_ssl_get_peer_cid() to also allow passing
NULL pointers in the arguments for the peer's CID value and length, in
case this information is needed.
For example, some users might only be interested in whether the use of
the CID was negotiated, in which case both CID value and length pointers
can be set to NULL. Other users might only be interested in confirming
that the use of CID was negotiated and the peer chose the empty CID,
in which case the CID value pointer only would be set to NULL.
It doesn't make sense to pass a NULL pointer for the CID length but a
non-NULL pointer for the CID value, as the caller has no way of telling
the length of the returned CID - and this case is therefore forbidden.
This commit modifies the CID configuration API mbedtls_ssl_conf_cid_len()
to allow the configuration of the stack's behaviour when receiving an
encrypted DTLS record with unexpected CID.
Currently, the stack silently ignores DTLS frames with an unexpected CID.
However, in a system which performs CID-based demultiplexing before passing
datagrams to the Mbed TLS stack, unexpected CIDs are a sign of something not
working properly, and users might want to know about it.
This commit introduces an SSL error code MBEDTLS_ERR_SSL_UNEXPECTED_CID
which the stack can return in response to an unexpected CID. It will
conditionally be put to use in subsequent commits.
There are two options:
1. Don't set it, and don't use it during record protection,
guarding the respective paths by a check whether TLS or
DTLS is used.
2. Set it to the default value even for TLS, and avoid the
protocol-dependent branch during record protection.
This commit picks option 2.
ApplicationData records are not protected against loss by DTLS
and our test applications ssl_client2 and ssl_server2 don't
implement any retransmission scheme to deal with loss of the
data they exchange. Therefore, the UDP proxy programs/test/udp_proxy
does not drop ApplicationData records.
With the introduction of the Connection ID, encrypted ApplicationData
records cannot be recognized as such by inspecting the record content
type, as the latter is always set to the CID specific content type for
protected records using CIDs, while the actual content type is hidden
in the plaintext.
To keep tests working, this commit adds CID records to the list of
content types which are protected against dropping by the UDP proxy.