This commit introduces two static helpers
- `x509_buf_to_buf_raw()`
- `x509_buf_raw_to_buf()`
which convert to/from the old `mbedtls_x509_buf` and
the new `mbedtls_x509_buf_raw` (the latter omitting the
ASN.1 tag field).
So far, the CRT frame structure `mbedtls_x509_crt_frame` used
as `issuer_raw` and `subject_raw` the _content_ of the ASN.1
name structure for issuer resp. subject. This was in contrast
to the fields `issuer_raw` and `subject_raw` from the legacy
`mbedtls_x509_crt` structure, and caused some information
duplication by having both variants `xxx_no_hdr` and `xxx_with_hdr`
in `mbedtls_x509_crt` and `mbedtls_x509_crt_frame`.
This commit removes this mismatch by solely using the legacy
form of `issuer_raw` and `subject_raw`, i.e. those _including_
the ASN.1 name header.
Previously, `mbedtls_x509_crt_cache_provide_frame()` provided the requested
CRT frame by always parsing the raw data underlying the CRT. That's inefficient
in legacy mode, where the CRTs fields are permanently accessible through the
legacy `mbedtls_x509_crt` structure.
This commit modifies `mbedtls_x509_crt_cache_provide_frame()` in legacy mode
(that is, !MBEDTLS_X509_ON_DEMAND_PARSING) to setup the CRT frame by copying
fields from the legacy CRT structure.
This commit modifies the CRT parsing routine to flush
the CRT cache after parsing. More specifically, the
frame cache is flushed before the PK is parsed, to
avoid storing the PK and frame in RAM at the same time.
With the introduction of `mbedtls_x509_crt_get_{issuer|name}()`,
users need an easy way of freeing the dynamic name structures these
functions return.
To that end, this commit renames `x509_{sequence|name}_free()`
to `mbedtls_x509_{sequence|name}_free()` and gives them external linkage.
The legacy `mbedtls_x509_crt` contains fields `issuer/subject`
which are dynamically allocated linked list presentations of the
CRTs issuer and subject names, respectively.
The new CRT frame structure `mbedtls_x509_crt_frame`, however,
only provides pointers to the raw ASN.1 buffers for the issuer
and subject, for reasons of memory usage.
For convenience to users that previously used the `issuer`/`subject`
fields of `mbedtls_x509_crt`, this commit adds two public API functions
`mbedtls_x509_crt_get_subject()` and `mbedtls_x509_crt_get_issuer()`
which allow to request the legacy linked list presentation of the
CRTs subject / issuer names.
Similar to `mbedtls_x509_crt_get_pk()`, the returned names are owned
by the user, and must be freed through a call to `mbedtls_x509_name_free()`.
This commit unconditionally adds two convenience API functions:
- mbedtls_x509_crt_get_frame()
- mbedtls_x509_crt_get_pk()
which allow users to extract a CRT frame or PK context
from a certificate.
The difference with the existing acquire/release API for frame and PK
contexts is that in contrast to the latter, the structures returned by
the new API are owned by the user (and, in case of the PK context, need
to be freed by him). This makes the API easier to use, but comes at the
cost of additional memory overhead.
This commit replaces the dummy implementation of the CRT acquire/release
framework by a cache-based implementation which remembers frame and PK
associated to a CRT across multiple `acquire/release` pairs.
Access the peer's PK through the PK acquire/release API only.
Care has to be taken not to accidentally overwrite the return
value `ret` from the CRT chain verification.
This commit modifies the static function `x509_crt_verify_name()` to
use the acquire/release API to access the given CRTs `subject` field.
This function is solely called from the beginning of the CRT chain
verification routine, which also needs to access the child's CRT frame.
It should therefore be considered - for a later commit - to collapse
the two acquire/release pairs to one, thereby saving some code.
Previously, `mbedtls_x509_crt_der_internal()` used the `version` field
(which is `0` after initialization but strictly greater than 0 once a
CRT has successfully been parsed) to determine whether an
`mbedtls_x509_crt` instance had already been setup.
Preparating for the removal of `version` from the structure, this
commit modifies the code to instead peek at the raw data pointer,
which is NULL as long as the CRT structure hasn't been setup with a CRT,
and will be kept in the new CRT structure.
This commit adapts `mbedtls_x509_crt_info()` to no longer access
structure fields from `mbedtls_x509_crt` directly, but to instead
query for a `mbedtls_x509_crt_frame` and `mbedtls_pk_context` and
use these to extract the required CRT information.
This commit continues rewriting the CRT chain verification to use
the new acquire/release framework for CRTs. Specifically, it replaces
all member accesses of the current _parent_ CRT by accesses to the
respective frame.
This commit introduces an internal structure `mbedtls_x509_crt_sig_info`
containing all information that has to be kept from a child CRT when searching
for a potential parent:
- The issuer name
- The signature type
- The signature
- The hash of the CRT
The structure can be obtained from a CRT frame via `x509_crt_get_sig_info()`
and freed via `x509_crt_free_sig_info()`.
The purpose of this is to reduce the amount of RAM used during CRT
chain verification; once we've extracted the signature info structure
from the current child CRT, we can free all cached data for that CRT
(frame and PK) before searching for a suitable parent. This way, there
will ultimately not be more than one frame needed at a single point
during the verification.
The function `x509_crt_find_parent_in()` traverses a list of CRTs
to find a potential parent to a given CRT. So far, the logic was
the following: For each candidate,
- check basic parenting skills (mostly name match)
- verify signature
- verify validity
This order is insuitable for the new acquire/release layer of
indirection when dealing with CRTs, because we either have to
query the candidate's CRT frame twice, or query frame and PK
simultaneously.
This commit moves the validity check to the beginning of the
routine to allow querying for the frame and then for the PK.
The entry point for restartable ECC needs to be moved for that
to not forget the validity-flag while pausing ECC computations.
During CRT verification, `x509_crt_check_signature()` checks whether a
candidate parent CRT correctly signs the current child CRT.
This commit rewrites this function to use the new acquire/release
framework for using CRTs.
The goal of the subsequent commits is to remove all direct uses
of the existing `mbedtls_x509_crt` apart from the `raw` buffer
and the linked list `next` pointer.
The approach is the following: Whenever a code-path needs to inspect
a CRT, it can request a frame for the CRT through the API
`x509_crt_frame_acquire()`. On success, this function returns a pointer
to a frame structure for the CRT (the origin of which is flexible and
need not concern the caller) that can be used to inspect the desired
fields. Once done, the caller hands back the frame through an explicit
call to `x509_crt_frame_release()`.
This commit also adds an inefficient dummy implementation for
`x509_crt_frame_acquire()` which always allocates a new
`mbedtls_x509_crt_frame` structure on the heap and parses it
from the raw data underlying the CRT. This will change in subsequent
commits, but it constitutes a valid implementation to test against.
Ultimately, `x509_crt_frame_acquire()` is to compute a frame for the
given CRT only once, and cache it for subsequent calls.
The need for `x509_crt_frame_release()` is the following: When
implementing `x509_crt_frame_acquire()` through a flushable cache
as indicated above, it must be ensured that no thread destroys
a cached frame structure for the time it is needed by another
thread. The `acquire/release` pair allows to explicitly delimit
the lifetime requirements for the returned frame structure.
The frame pointer must not be used after the `release` call anymore;
and in fact, the dummy implementation shows that it would
immediately lead to a memory failure.
Analogously to `x509_crt_frame_{acquire|release}()`, there's also
`x509_crt_pk_{acquire|release}()` which allows to acquire/release
a PK context setup from the public key contained within the CRT.
This commit restructures the parsing of X.509 CRTs in the following way:
First, it introduces a 'frame' structure `mbedtls_x509_crt_frame`, which
contains pointers to some structured fields of a CRT as well as copies of
primitive fields. For example, there's a pointer-length pair delimiting the raw
public key data in the CRT, but there's a C-uint8 to store the CRT version
(not a pointer-length pair delimiting the ASN.1 structure holding the version).
Setting up a frame from a raw CRT buffer does not require any memory outside
of the frame structure itself; it's just attaches a 'template' to the buffer
that allows to inspect the structured parts of the CRT afterwards.
Note that the frame structure does not correspond to a particular ASN.1
structure; for example, it contains pointers to delimit the three parts
of a CRT (TBS, SignatureAlgorithm, Signature), but also pointers to the
fields of the TBS, and pointers into the Extensions substructure of the TBS.
Further, the commit introduces an internal function `x509_crt_parse_frame()`
which sets up a frame from a raw CRT buffer, as well as several small helper
functions which help setting up the more complex structures (Subject, Issuer, PK)
from the frame.
These functions are then put to use to rewrite the existing parsing function
`mbedtls_x509_crt_parse_der_core()` by setting up a CRT frame from the input
buffer, residing on the stack, and afterwards copying the respective fields
to the actual `mbedtls_x509_crt` structure and performing the deeper parsing
through the various helper functions.