See for example page 8 of
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
The previous constant probably came from a typo as it was 2^26 - 2^5 instead
of 2^36 - 2^5. Clearly the intention was to allow for a constant bigger than
2^32 as the ull suffix and cast to uint64_t show.
fixes#362
In case an entry with the given OID already exists in the list passed to
mbedtls_asn1_store_named_data() and there is not enough memory to allocate
room for the new value, the existing entry will be freed but the preceding
entry in the list will sill hold a pointer to it. (And the following entries
in the list are no longer reachable.) This results in memory leak or a double
free.
The issue is we want to leave the list in a consistent state on allocation
failure. (We could add a warning that the list is left in inconsistent state
when the function returns NULL, but behaviour changes that require more care
from the user are undesirable, especially in a stable branch.)
The chosen solution is a bit inefficient in that there is a time where both
blocks are allocated, but at least it's safe and this should trump efficiency
here: this code is only used for generating certificates, which is unlikely to
be done on very constrained devices, or to be in the critical loop of
anything. Also, the sizes involved should be fairly small anyway.
fixes#367
fixes#310
Actually all key exchanges that use a certificate use signatures too, and
there is no key exchange that uses signatures but no cert, so merge those two
flags.
Conflicts:
ChangeLog
Two possible integer overflows (during << 2 or addition in BITS_TO_LIMB())
could result in far too few memory to be allocated, then overflowing the
buffer in the subsequent for loop.
Both integer overflows happen when slen is close to or greater than
SIZE_T_MAX >> 2 (ie 2^30 on a 32 bit system).
Note: one could also avoid those overflows by changing BITS_TO_LIMB(s << 2) to
CHARS_TO_LIMB(s >> 1) but the solution implemented looks more robust with
respect to future code changes.
Found by Guido Vranken.
Two possible integer overflows (during << 2 or addition in BITS_TO_LIMB())
could result in far too few memory to be allocated, then overflowing the
buffer in the subsequent for loop.
Both integer overflows happen when slen is close to or greater than
SIZE_T_MAX >> 2 (ie 2^30 on a 32 bit system).
Note: one could also avoid those overflows by changing BITS_TO_LIMB(s << 2) to
CHARS_TO_LIMB(s >> 1) but the solution implemented looks more robust with
respect to future code changes.