Now that we have ITS over files, we no longer need a direct backend
for key storage over files. Remove psa_crypto_storage_file and its
tests.
Switch MBEDTLS_PSA_CRYPTO_STORAGE_ITS_C and MBEDTLS_PSA_ITS_FILE_C on
by default. This preserves functionality and test coverage in the
default configuration, but forgets any key previously stored using the
file backend.
Merge storage_common.h and internal_trusted_storage.h into a single
file for convenience.
Remove #include of <psa/error.h> which crypto doesn't have yet and
include <psa/crypto_types.h> and <psa/crypto_values.h> instead.
Drop __cplusplus support which we don't need.
Tweak style (whitespace, line breaks, comment formatting) to satisfy
check-names.sh and check-files.sh.
Commit a72c10c44d5d54d05aceb00e0368f02f9f62151a in the
psa_trusted_storage_api repository, from which the PSA ITS
specification version 1.1 is derived.
* origin/development: (113 commits)
Update query_config.c
Fix failure in SSLv3 per-version suites test
Adjust DES exclude lists in test scripts
Clarify 3DES changes in ChangeLog
Fix documentation for 3DES removal
Exclude 3DES tests in test scripts
Fix wording of ChangeLog and 3DES_REMOVE docs
Reduce priority of 3DES ciphersuites
Fix unused variable warning in ssl_parse_certificate_coordinate()
Update the crypto submodule to a78c958
Fix ChangeLog entry to correct release version
Fix typo in x509write test data
Add ChangeLog entry for unused bits in bitstrings
Improve docs for named bitstrings and their usage
Add tests for (named) bitstring to suite_asn1write
Add new function mbedtls_asn1_write_named_bitstring()
Add missing compile time guard in ssl_client2
Update programs/ssl/query_config.c
ssl_client2: Reset peer CRT info string on reconnect
Add further debug statements on assertion failures
...
* origin/pr/1520:
Use certificates from data_files and refer them
Specify server certificate to use in SHA-1 test
refactor CA and SRV certificates into separate blocks
refactor SHA-1 certificate defintions and assignment
refactor server SHA-1 certificate definition into a new block
define TEST_SRV_CRT_RSA_SOME in similar logic to TEST_CA_CRT_RSA_SOME
server SHA-256 certificate now follows the same logic as CA SHA-256 certificate
add entry to ChangeLog
* public/pr/2421: (68 commits)
Fix unused variable warning in ssl_parse_certificate_coordinate()
Add missing compile time guard in ssl_client2
Update programs/ssl/query_config.c
ssl_client2: Reset peer CRT info string on reconnect
Add further debug statements on assertion failures
Fix typo in documentation of ssl_parse_certificate_chain()
Add debug output in case of assertion failure
Fix typo in SSL ticket documentation
Add config sanity check for !MBEDTLS_SSL_KEEP_PEER_CERTIFICATE
ssl_client2: Zeroize peer CRT info buffer when reconnecting
Reintroduce numerous ssl-opt.sh tests if !MBEDTLS_SSL_KEEP_PEER_CERT
ssl_client2: Extract peer CRT info from verification callback
Improve documentation of mbedtls_ssl_get_peer_cert()
Improve documentation of MBEDTLS_SSL_KEEP_PEER_CERTIFICATE
Fix indentation of Doxygen comment in ssl_internal.h
Set peer CRT length only after successful allocation
Remove question in comment about verify flags on cli vs. server
Remove misleading and redundant guard around restartable ECC field
Add test for !MBEDTLS_SSL_KEEP_PEER_CERTIFICATE to all.sh
Free peer CRT chain immediately after verifying it
...
* restricted/pr/528:
Update query_config.c
Fix failure in SSLv3 per-version suites test
Adjust DES exclude lists in test scripts
Clarify 3DES changes in ChangeLog
Fix documentation for 3DES removal
Exclude 3DES tests in test scripts
Fix wording of ChangeLog and 3DES_REMOVE docs
Reduce priority of 3DES ciphersuites
* public/pr/2028:
Update the crypto submodule to a78c958
Fix ChangeLog entry to correct release version
Fix typo in x509write test data
Add ChangeLog entry for unused bits in bitstrings
Improve docs for named bitstrings and their usage
Add tests for (named) bitstring to suite_asn1write
Add new function mbedtls_asn1_write_named_bitstring()
Add a new function mbedtls_asn1_write_named_bitstring() that removes
trailing 0s at the end of DER encoded bitstrings. The function is
implemented according to Hanno Becker's suggestions.
This commit also changes the functions x509write_crt_set_ns_cert_type
and crt_set_key_usage to call the new function as the use named
bitstrings instead of the regular bitstrings.
Additional work done as part of merge:
- Run ./tests/scripts/check-generated-files.sh and check in the
resulting changes to programs/ssl/query_config.c
The ecp_get_type function comes handy in higher level modules and tests
as well. It is not inline anymore, to enable alternative implementations
to implement it for themselves.
mbedtls_ecp_read_key() module returned without an error even when
importing keys corresponding to the requested group was not
implemented.
We change this and return an error when the requested group is not
supported and make the remaining import/export functions more robust.
If we don't need to store the peer's CRT chain permanently, we may
free it immediately after verifying it. Moreover, since we parse the
CRT chain in-place from the input buffer in this case, pointers from
the CRT structure remain valid after freeing the structure, and we
use that to extract the digest and pubkey from the CRT after freeing
the structure.
It is used in `mbedtls_ssl_session_free()` under
`MBEDTLS_X509_CRT_PARSE_C`, but defined only if
`MBEDTLS_KEY_EXCHANGE__WITH_CERT__ENABLED`.
Issue #2422 tracks the use of
`MBEDTLS_KEY_EXCHANGE__WITH_CERT_ENABLED` instead of
`MBEDTLS_X509_CRT_PARSE_C` for code and fields
related to CRT-based ciphersuites.
The server expects a CertificateVerify message only if it has
previously received a Certificate from the client.
So far, this was detected by looking at the `peer_cert` field
in the current session. Preparing to remove the latter, this
commit changes this to instead determine the presence of a peer
certificate by checking the new `peer_cert_digest` pointer.
We must dispatch between the peer's public key stored as part of
the peer's CRT in the current session structure (situation until
now, and future behaviour if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is
enabled), and the sole public key stored in the handshake structure
(new, if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is disabled).
We must dispatch between the peer's public key stored as part of
the peer's CRT in the current session structure (situation until
now, and future behaviour if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is
enabled), and the sole public key stored in the handshake structure
(new, if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is disabled).
We must dispatch between the peer's public key stored as part of
the peer's CRT in the current session structure (situation until
now, and future behaviour if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is
enabled), and the sole public key stored in the handshake structure
(new, if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is disabled).
We must dispatch between the peer's public key stored as part of
the peer's CRT in the current session structure (situation until
now, and future behaviour if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is
enabled), and the sole public key stored in the handshake structure
(new, if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is disabled).
This commit modifies `mbedtls_ssl_parse_certificate()` to store a
copy of the peer's public key after parsing and verifying the peer's
CRT chain.
So far, this leads to heavy memory duplication: We have the CRT chain
in the I/O buffer, then parse (and, thereby, copy) it to a
`mbedtls_x509_crt` structure, and then make another copy of the
peer's public key, plus the overhead from the MPI and ECP structures.
This inefficiency will soon go away to a significant extend, because:
- Another PR adds functionality to parse CRTs without taking
ownership of the input buffers. Applying this here will allow
parsing and verifying the peer's chain without making an additional
raw copy. The overhead reduces to the size of `mbedtls_x509_crt`,
the public key, and the DN structures referenced in the CRT.
- Once copyless parsing is in place and the removal of the peer CRT
is fully implemented, we can extract the public key bounds from
the parsed certificate and then free the entire chain before
parsing the public key again. This means that we never store
the parsed public key twice at the same time.
When removing the (session-local) copy of the peer's CRT chain, we must
keep a handshake-local copy of the peer's public key, as (naturally) every
key exchange will make use of that public key at some point to verify that
the peer actually owns the corresponding private key (e.g., verify signatures
from ServerKeyExchange or CertificateVerify, or encrypt a PMS in a RSA-based
exchange, or extract static (EC)DH parameters).
This commit adds a PK context field `peer_pubkey` to the handshake parameter
structure `mbedtls_handshake_params_init()` and adapts the init and free
functions accordingly. It does not yet make actual use of the new field.
This commit adds an ASN.1 buffer field `pk_raw` to `mbedtls_x509_crt`
which stores the bounds of the raw public key data within an X.509 CRT.
This will be useful in subsequent commits to extract the peer's public
key from its certificate chain.
This commit changes the format of session tickets to include
the digest of the peer's CRT if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE
is disabled.
This commit does not yet remove the peer CRT itself.
`mbedtls_ssl_parse_certificate()` parses the peer's certificate chain
directly into the `peer_cert` field of the `mbedtls_ssl_session`
structure being established. To allow to optionally remove this field
from the session structure, this commit changes this to parse the peer's
chain into a local variable instead first, which can then either be freed
after CRT verification - in case the chain should not be stored - or
mapped to the `peer_cert` if it should be kept. For now, only the latter
is implemented.
mbedtls_ssl_parse_certificate() will fail if a ciphersuite requires
a certificate, but none is provided. While it is sensible to double-
check this, failure should be reported as an internal error and not
as an unexpected message.
A subsequent commit will need this function in the session ticket
and session cache implementations. As the latter are server-side,
this commit also removes the MBEDTLS_SSL_CLI_C guard.
For now, the function is declared in ssl_internal.h and hence not
part of the public API.
This commit modifies the helper `ssl_parse_certificate_chain()` to
accep any target X.509 CRT chain instead of hardcoding it to
`session_negotiate->peer_cert`. This increases modularity and paves
the way towards removing `mbedtls_ssl_session::peer_cert`.
This commit simplifies the client-side code for outgoing CertificateVerify
messages, and server-side code for outgoing CertificateRequest messages and
incoming CertificateVerify messages, through the use of the macro
`MBEDTLS_KEY_EXCHANGE__CERT_REQ_ALLOWED__ENABLED`
indicating whether a ciphersuite allowing CertificateRequest messages
is enabled in the configuration, as well as the helper function
`mbedtls_ssl_ciphersuite_cert_req_allowed()`
indicating whether a particular ciphersuite allows CertificateRequest
messages.
These were already used in the client-side code to simplify the
parsing functions for CertificateRequest messages.
This commit adds a helper function `ssl_parse_certificate_coordinate()`
which checks whether a `Certificate` message is expected from the peer.
The logic is the following:
- For ciphersuites which don't use server-side CRTs, no Certificate
message is expected (neither for the server, nor the client).
- On the server, no client certificate is expected in the following cases:
* The server server didn't request a Certificate, which is controlled
by the `authmode` setting.
* A RSA-PSK suite is used; this is the only suite using server CRTs
but not allowing client-side authentication.
This commit introduces a static helper function
`mbedtls_ssl_ciphersuite_uses_srv_cert()`
which determines whether a ciphersuite may make use of server-side CRTs.
This function is in turn uses in `mbedtls_ssl_parse_certificate()` to
skip certificate parsing for ciphersuites which don't involve CRTs.
Note: Ciphersuites not using server-side CRTs don't allow client-side CRTs
either, so it is safe to guard `mbedtls_ssl_{parse/write}_certificate()`
this way.
Note: Previously, the code uses a positive check over the suites
- MBEDTLS_KEY_EXCHANGE_PSK
- MBEDTLS_KEY_EXCHANGE_DHE_PSK
- MBEDTLS_KEY_EXCHANGE_ECDHE_PSK
- MBEDTLS_KEY_EXCHANGE_ECJPAKE,
while now, it uses a negative check over `mbedtls_ssl_ciphersuite_uses_srv_cert()`,
which checks for the suites
- MBEDTLS_KEY_EXCHANGE_RSA
- MBEDTLS_KEY_EXCHANGE_RSA_PSK
- MBEDTLS_KEY_EXCHANGE_DHE_RSA
- MBEDTLS_KEY_EXCHANGE_ECDH_RSA
- MBEDTLS_KEY_EXCHANGE_ECDHE_RSA
- MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA
- MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA
This is equivalent since, together, those are all ciphersuites.
Quoting ssl_ciphersuites.h:
```
typedef enum {
MBEDTLS_KEY_EXCHANGE_NONE = 0,
MBEDTLS_KEY_EXCHANGE_RSA,
MBEDTLS_KEY_EXCHANGE_DHE_RSA,
MBEDTLS_KEY_EXCHANGE_ECDHE_RSA,
MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA,
MBEDTLS_KEY_EXCHANGE_PSK,
MBEDTLS_KEY_EXCHANGE_DHE_PSK,
MBEDTLS_KEY_EXCHANGE_RSA_PSK,
MBEDTLS_KEY_EXCHANGE_ECDHE_PSK,
MBEDTLS_KEY_EXCHANGE_ECDH_RSA,
MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA,
MBEDTLS_KEY_EXCHANGE_ECJPAKE,
} mbedtls_key_exchange_type_t;
```
The handler `mbedtls_ssl_parse_certificate()` for incoming `Certificate`
messages contains many branches updating the handshake state. For easier
reasoning about state evolution, this commit introduces a single code-path
updating the state machine at the end of `mbedtls_ssl_parse_certificate()`.
If an attempt for session resumption fails, the `session_negotiate` structure
might be partially filled, and in particular already contain a peer certificate
structure. This certificate structure needs to be freed before parsing the
certificate sent in the `Certificate` message.
This commit moves the code-path taking care of this from the helper
function `ssl_parse_certificate_chain()`, whose purpose should be parsing
only, to the top-level handler `mbedtls_ssl_parse_certificate()`.
The fact that we don't know the state of `ssl->session_negotiate` after
a failed attempt for session resumption is undesirable, and a separate
issue #2414 has been opened to improve on this.
This commit introduces a server-side static helper function
`ssl_srv_check_client_no_crt_notification()`, which checks if
the message we received during the incoming certificate state
notifies the server of the lack of certificate on the client.
For SSLv3, such a notification comes as a specific alert,
while for all other TLS versions, it comes as a `Certificate`
handshake message with an empty CRT list.
So far, we've used the `peer_cert` pointer to detect whether
we're parsing the first CRT, but that will soon be removed
if `MBEDTLS_SSL_KEEP_PEER_CERTIFICATE` is unset.
This commit introduces a helper function `ssl_clear_peer_cert()`
which frees all data related to the peer's certificate from an
`mbedtls_ssl_session` structure. Currently, this is the peer's
certificate itself, while eventually, it'll be its digest only.
After mitigating the 'triple handshake attack' by checking that
the peer's end-CRT didn't change during renegotation, the current
code avoids re-parsing the CRT by moving the CRT-pointer from the
old session to the new one. While efficient, this will no longer
work once only the hash of the peer's CRT is stored beyond the
handshake.
This commit removes the code-path moving the old CRT, and instead
frees the entire peer CRT chain from the initial handshake as soon
as the 'triple handshake attack' protection has completed.
Renamed the tests because they are explicitly testing Curve25519 and
nothing else. Improved test coverage, test documentation and extended
in-code documentation with a specific reference to the standard as well.
The library is able to perform computations and cryptographic schemes on
curves with x coordinate ladder representation. Here we add the
capability to export such points.
The function `mbedtls_mpi_write_binary()` writes big endian byte order,
but we need to be able to write little endian in some caseses. (For
example when handling keys corresponding to Montgomery curves.)
Used `echo xx | tac -rs ..` to transform the test data to little endian.
The private keys used in ECDH differ in the case of Weierstrass and
Montgomery curves. They have different constraints, the former is based
on big endian, the latter little endian byte order. The fundamental
approach is different too:
- Weierstrass keys have to be in the right interval, otherwise they are
rejected.
- Any byte array of the right size is a valid Montgomery key and it
needs to be masked before interpreting it as a number.
Historically it was sufficient to use mbedtls_mpi_read_binary() to read
private keys, but as a preparation to improve support for Montgomery
curves we add mbedtls_ecp_read_key() to enable uniform treatment of EC
keys.
For the masking the `mbedtls_mpi_set_bit()` function is used. This is
suboptimal but seems to provide the best trade-off at this time.
Alternatives considered:
- Making a copy of the input buffer (less efficient)
- removing the `const` constraint from the input buffer (breaks the api
and makes it less user friendly)
- applying the mask directly to the limbs (violates the api between the
modules and creates and unwanted dependency)
The library is able to perform computations and cryptographic schemes on
curves with x coordinate ladder representation. Here we add the
capability to import such points.
The function `mbedtls_mpi_read_binary()` expects big endian byte order,
but we need to be able to read from little endian in some caseses. (For
example when handling keys corresponding to Montgomery curves.)
Used `echo xx | tac -rs .. | tr [a-z] [A-Z]` to transform the test data
to little endian and `echo "ibase=16;xx" | bc` to convert to decimal.
Define MBEDTLS_ECDH_LEGACY_CONTEXT in config.h instead of hard-coding
this in ecdh.h so that its absence can be tested. Document it as
experimental so that we reserve the right to change it in the future.
If mbedtls_ecdh_get_params is called with keys belonging to
different groups, make it return an error the second time, rather than
silently interpret the first key as being on the second curve.
This makes the non-regression test added by the previous commit pass.
In places where we detect a context is in a bad state and there is no
sensitive data to clear, simply return PSA_ERROR_BAD_STATE and don't
abort on behalf of the application. The application will choose what to
do when it gets a bad state error.
The motivation for this change is that an application should decide what
to do when it misuses the API and encounters a PSA_ERROR_BAD_STATE
error. The library should not attempt to abort on behalf of the
application, as that may not be the correct thing to do in all
circumstances.
Calling psa_*_setup() twice on a MAC, cipher, or hash context should
result in a PSA_ERROR_BAD_STATE error because the operation has already
been set up.
Fixes#10