This commit fixes issue #1212 related to platform-specific entropy
polling in an syscall-emulated environment.
Previously, the implementation of the entropy gathering function
`mbedtls_platform_entropy_poll()` for linux machines used the
following logic to determine how to obtain entropy from the kernel:
1. If the getrandom() system call identifier SYS_getrandom is present and
the kernel version is 3.17 or higher, use syscall( SYS_getrandom, ... )
2. Otherwise, fall back to reading from /dev/random.
There are two issues with this:
1. Portability:
When cross-compiling the code for a different
architecture and running it through system call
emulation in qemu, qemu reports the host kernel
version through uname but, as of v.2.5.0,
doesn't support emulating the getrandom() syscall.
This leads to `mbedtls_platform_entropy_poll()`
failing even though reading from /dev/random would
have worked.
2. Style:
Extracting the linux kernel version from
the output of `uname` is slightly tedious.
This commit fixes both by implementing the suggestion in #1212:
- It removes the kernel-version detection through uname().
- Instead, it checks whether `syscall( SYS_getrandom, ... )`
fails with errno set to ENOSYS indicating an unknown system call.
If so, it falls through to trying to read from /dev/random.
Fixes#1212.
This commit changes the behavior of the record decryption routine
`ssl_decrypt_buf()` in the following situation:
1. A CBC ciphersuite with Encrypt-then-MAC is used.
2. A record with valid MAC but invalid CBC padding is received.
In this situation, the previous code would not raise and error but
instead forward the decrypted packet, including the wrong padding,
to the user.
This commit changes this behavior to return the error
MBEDTLS_ERR_SSL_INVALID_MAC instead.
While erroneous, the previous behavior does not constitute a
security flaw since it can only happen for properly authenticated
records, that is, if the peer makes a mistake while preparing the
padded plaintext.
If `MBEDTLS_MEMORY_BUFFER_ALLOC_C` is configured and Mbed TLS'
custom buffer allocator is used for calloc() and free(), the
read buffer used by the server example application is allocated
from the buffer allocator, but freed after the buffer allocator
has been destroyed. If memory backtracing is enabled, this leaves
a memory leak in the backtracing structure allocated for the buffer,
as found by valgrind.
Fixes#2069.
* The variables `csr` and `issuer_crt` are initialized but not freed.
* The variable `entropy` is unconditionally freed in the cleanup section
but there's a conditional jump to that section before its initialization.
This cmmot Moves it to the other initializations happening before the
first conditional jump to the cleanup section.
Fixes#1422.
Exclude ".git" directories anywhere. This avoids spurious errors in git
checkouts that contain branch names that look like a file
check-files.py would check. Fix#1713
Exclude "mbed-os" anywhere and "examples" from the root. Switch to the
new mechanism to exclude "yotta/module". These are directories where
we store third-party files that do not need to match our preferences.
Exclude "cov-int" from the root. Fix#1691
Generate the documentation from include and doxygen/input only. Don't
get snared by files containing Doxygen comments that lie in other
directories such as tests, yotta, crypto/include, ...
The only difference this makes in a fresh checkout is that the
documentation no longer lists target_config.h. This file is from
yotta, does not contain any Doxygen comment, and its inclusion in the
rendered documentation was clearly an oversight.
Changes the IP address to bind to for dtls_server.c to be "::" or optionally
"0.0.0.0" if the preprocessor symbol FORCE_IPV4 is defined.
Also changes the destinaton IP address for dtls_client.c to be "::1" or if
FORCE_IPV4 symbol is defined "127.0.0.1".
This change allows on compilation dtls_server.c and dtls_client.c to both be
compiled to use either IPv4 or IPv6 so out of the box they will work together
without problem, and to avoid dtls_server.c binding to IPv6 and dtls_client.c
binding to IPv4.
This re-introduces the apidoc with full config.h, but hopefully with the race
conditions and other issues that the previous implementation had.
Adapt doxygen test script to use that new script, and also check for errors
in addition to warnings while at it.
This partially reverts 1989caf71c (only the changes to Makefile and
CMakeLists, the addition to scripts/config.pl is kept).
Modifying config.h in the apidoc target creates a race condition with
make -j4 all apidoc
where some parts of the library, tests or programs could be built with the
wrong config.h, resulting in all kinds of (semi-random) errors. Recent
versions of CMake mitigate this by adding a .NOTPARALLEL target to the
generated Makefile, but people would still get errors with older CMake
versions that are still in use (eg in RHEL 5), and with plain make.
An additional issue is that, by failing to use cp -p, the apidoc target was
updating the timestamp on config.h, which seems to cause further build issues.
Let's get back to the previous, safe, situation. The improved apidoc building
will be resurrected in a script in the next commit.
fixes#390fixes#391
Apparently travis has an old version of doxygen that doesn't know all tags in
our config. That's not something we care about, we only want to know about
warnings in our doxygen content