We failed check-names.sh due to using a define which wasn't described or
defined anywhere. Even though we won't realistically enable
MBEDTLS_PSA_CRYPTO_SPM via the configuration system (and will do it from
PSA Crypto SPM tooling instead), add a description of the configuration to
config.h as good practice. Exclude MBEDTLS_PSA_CRYPTO_SPM from the "full"
configuration as well.
We failed all.sh on the "test: doxygen markup outside doxygen blocks" due
to doxygen markup being outside a Doxygen block. Add an extra `*` to the
psa_get_key_from_slot comment to denote the comment as a Doxygen comment.
Make function names for multipart operations more consistent (cipher
edition).
Rename symmetric cipher multipart operation functions so that they all
start with psa_cipher_:
* psa_encrypt_setup -> psa_cipher_encrypt_setup
* psa_decrypt_setup -> psa_cipher_decrypt_setup
* psa_encrypt_set_iv -> psa_cipher_set_iv
* psa_encrypt_generate_iv -> psa_cipher_generate_iv
Use if-else-if chains rather than switch because many blocks apply to
a class of algoritmhs rather than a single algorithm or a fixed set
of algorithms.
Call abort on more error paths that were missed earlier.
Add tests of key policy checks for MAC, cipher, AEAD, asymmetric
encryption and asymmetric signature. For each category, test
with/without the requisite usage flag in each direction, and test
algorithm mismatch.
At this point it fixes memory leaks as well. These memory leaks are the
fault of the 'psa_cipher_finish()' function and the calls fixed in this
commit (among with many others in the test suite) will become obsolete
after fixing 'psa_cipher_finish()'.
Reorganize error handling code in psa_mac_finish_internal,
psa_mac_sign_finish and psa_mac_verify finish to ensure that:
* psa_mac_abort() is always called, on all success and error paths.
* psa_mac_finish places a safe value in the output parameters on
all error paths, even if abort fails.
Add required includes in tests and psa_crypto.c file in order to be able to compilef for the SPM solution.
Some functions needed to be deprecated from psa_crypto.c since they already implemented in the SPM.
In mbedtls_rsa_rsaes_oaep_encrypt and
mbedtls_rsa_rsaes_pkcs1_v15_encrypt, if the input length is 0 (which
is unusual and mostly useless, but permitted) then it is fine for the
input pointer to be NULL. Don't return an error in this case.
When `input` is NULL, `memcpy( p, input, ilen )` has undefined
behavior even if `ilen` is zero. So skip the `memcpy` call in this
case. Likewise, in `mbedtls_rsa_rsaes_oaep_decrypt` and
`mbedtls_rsa_rsaes_pkcs1_v15_decrypt`, skip the `memcpy` call if
`*olen` is zero.
Make function names for multipart operations more consistent (MAC
setup edition).
Split psa_mac_setup into two functions psa_mac_sign_setup and
psa_mac_verify_setup. These functions behave identically except that
they require different usage flags on the key. The goal of the split
is to enforce the key policy during setup rather than at the end of
the operation (which was a bit of a hack).
In psa_mac_sign_finish and psa_mac_verify_finish, if the operation is
of the wrong type, abort the operation before returning BAD_STATE.
The RSA module uses unsigned int for hash_length. The PSA Crypto API
uses size_t for hash_length. Cast hash_length to unsigned int when
passed to the hash module.
In psa_hash_finish and psa_mac_finish_internal, set the fallback
output length (which is reported on error) to the output buffer size,
not to the _expected_ buffer size which could be larger.
Use PSA_BLOCK_CIPHER_BLOCK_SIZE() macro to get the cipher block size instead of accessing the operation struct
additionally, for SPM case, the 'block_size' member is not a member in the operation struct
The GCM, CCM, RSA, and cipher modules inconsistently use int or unsigned
int for a count of bits. The PSA Crypto API uses size_t for counting
things. This causes issues on LLP64 systems where a size_t can hold more
than an unsigned int. Add casts for where key_bits and bits are passed to
mbedtls_* APIs.
Isolate the code of psa_get_key_information that calculates the bit
size of a key into its own function which can be called by functions
that have a key slot pointer.
Use size_t for block_size in psa_mac_abort() because
psa_get_hash_block_size() returns a size_t. This also helps to avoid
compiler warnings on LLP64 systems.
New functions psa_get_key_slot(), psa_get_empty_key_slot(),
psa_get_key_from_slot() to access a key slot object from a key slot
number. These functions perform all requisite validations:
* psa_get_key_slot() verifies that the key slot number is in range.
* psa_get_empty_key_slot() verifies that the slot is empty.
* psa_get_key_from_slot() verifies that the slot contains a key with
a suitable policy.
Always use these functions so as to make sure that the requisite
validations are always performed.
Fill the unused part of the output buffer with '!', for consistency
with hash and mac.
On error, set the output length to the output buffer size and fill the
output buffer with '!', again for consistency with hash and mac. This
way an invalid output is more visible in a memory dump.
Restructure the error paths so that there is a single place where the
unused part of the output buffer is filled.
Also remove a redundant initialization of *signature_length to 0.
In tests that had a hard-coded buffer size, use PSA_MAC_MAX_SIZE or
PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE as appropriate.
Test that PSA_xxx_MAX_SIZE is larger than the size used in tests that
expect a specific output.
To avoid a possible loss of precision, and to be semantically correct,
use psa_key_slot_t (which is 16 bits) instead of size_t (which is 32 or
64 bits on common platforms) in mbedtls_psa_crypto_free().
When the size of a buffer is 0, the corresponding pointer argument may
be null. In such cases, library functions must not perform arithmetic
on the pointer or call standard library functions such as memset and
memcpy, since that would be undefined behavior in C. Protect such
cases.
Refactor the storage of a 0-sized raw data object to make it store a
null pointer, rather than depending on the behavior of calloc(1,0).