A 0-length buffer for the key is a legitimate edge case. Ensure that
it works, even with buf=NULL. Document the key and keylen parameters.
There are already test cases for parsing an empty buffer. A subsequent
commit will add tests for writing to an empty buffer.
Add checks for null pointers under MBEDTLS_CHECK_PARAMS.
In functions that perform operations with a context, only check if the
context pointer is non-null under MBEDTLS_CHECK_PARAMS. In the default
configuration, unconditionally dereference the context pointer.
In functions that query a context, support NULL as a
pointer-to-context argument, and return the same value as for a
context which has been initialized but not set up.
- The validity of the input and output parameters is checked by
parameter validation.
- A PRNG is required in public mode only (even though it's also
recommended in private mode), so move the check to the
corresponding branch.
The check was already done later when calling ECB, (as evidenced by the tests
passing, which have a call with data_unit set to NULL), but it's more readable
to have it here too, and more helpful when debugging.
Some of the documentation is obsolete in its reference to key slots
when it should discuss key handles. This may require a further pass,
possibly with some reorganization of error codes.
Update the documentation of functions that modify key slots (key
material creation and psa_set_key_policy()) to discuss how they affect
storage.
Move psa_load_persistent_key_into_slot,
psa_internal_make_key_persistent and psa_internal_release_key_slot to
the slot management module.
Expose psa_import_key_into_slot from the core.
After this commit, there are no longer any functions declared in
psa_crypto_slot_management.h and defined in psa_crypto.c. There are
still function calls in both directions between psa_crypto.c and
psa_crypto_slot_management.c.
Move the key slot array and its initialization and wiping to the slot
management module.
Also move the lowest-level key slot access function psa_get_key_slot
and the auxiliary function for slot allocation
psa_internal_allocate_key_slot to the slot management module.
Since Mbed TLS 2.10, there is a single copy of
mbedtls_platform_zeroize for the whole library instead of one per
module. Update the PSA crypto module accordingly.
This commit finishes the removal of support for direct access to key
slots in psa_crypto.c.
This marks the end of the necessary phase of the transition to key
handles. The code should subsequently be refactored to move key slot
management from psa_crypto.c to psa_crypto_slot_management.c.
This commit marks the beginning of the removal of support for direct
access to key slots. From this commit on, programs that use
psa_key_slot_t will no longer compile.
Subsequent commits will remove the now-unused legacy support in
psa_crypto.c.
The code only worked if psa_key_id_t (formerly psa_key_slot_t)
promoted to int and every value fit in int. Now the code only assumes
that psa_key_id_t is less wide than unsigned long, which is the case
since psa_key_id_t is a 32-bit type in our implementation.
Move the persistent storage implementation from psa_key_slot_t to
psa_key_id_t. For the most part, this just means changing the types of
function arguments.
Update the documentation of some functions to reflect the fact that
the slot identifier is purely a storage identifier and is not related
to how the slot is designated in memory.
Many places in the code called psa_remove_key_data_from_memory (which
preserves metadata for the sake of failues in psa_import_key) followed
by clearing the slot data. Use an auxiliary function for this.
Access the slot directly rather than going through psa_get_key_slot.
Unlike other places where key slots are accessed through
psa_get_key_slot, here, we know where all the slots are and there are
no policy or permission considerations.
This resolves a memory leak: allocated slots were not getting freed
because psa_get_key_slot rejected the attempt of accessing them
directly rather than via a handle.
Implement psa_allocate_key, psa_open_key, psa_create_key,
psa_close_key.
Add support for keys designated to handles to psa_get_key_slot, and
thereby to the whole API.
Allocated and non-allocated keys can coexist. This is a temporary
stage in order to transition from the use of direct slot numbers to
allocated handles only. Once all the tests and sample programs have
been migrated to use handles, the implementation will be simplified
and made more robust with support for handles only.
At the moment, the in-storage slot identifier is the in-memory slot
number. But track them separately, to prepare for API changes that
will let them be different (psa_open_key, psa_create_key).
The function called through the macro MBEDTLS_PARAM_FAILED() must be supplied by
users and makes no sense as a library function, apart from debug and test.
Function calls to alternative implementations have to follow certain
rules in order to preserve correct functionality. To avoid accidentally
breaking these rules we state them explicitly in the ECP module for
ourselves and every contributor to see.
We initialized the ECC hardware before calling
mbedtls_ecp_mul_shortcuts(). This in turn calls
mbedtls_ecp_mul_restartable(), which initializes and frees the hardware
too. This issue has been introduced by recent changes and caused some
accelerators to hang.
We move the initialization after the mbedtle_ecp_mul_shortcuts() calls
to avoid double initialization.
The SSL module accesses ECDH context members directly. This can't work
with the new context, where we can't make any assumption about the
implementation of the context.
This commit makes use of the new functions to avoid accessing ECDH
members directly. The only members that are still accessed directly are
the group ID and the point format and they are independent from the
implementation.
The SSL module accesses ECDH context members directly to print debug
information. This can't work with the new context, where we can't make
assumptions about the implementation of the context. This commit adds
new debug functions to complete the encapsulation of the ECDH context
and work around the problem.
The functionality from public API functions are moved to
`xxx_internal()` functions. The public API functions are modified to do
basic parameter validation and dispatch the call to the right
implementation.
There is no intended change in behaviour when
`MBEDTLS_ECDH_LEGACY_CONTEXT` is enabled.
In the future we want to support alternative ECDH implementations. We
can't make assumptions about the structure of the context they might
use, and therefore shouldn't access the members of
`mbedtls_ecdh_context`.
Currently the lifecycle of the context can't be done without direct
manipulation. This commit adds `mbedtls_ecdh_setup()` to complete
covering the context lifecycle with functions.
`mbedtls_ecp_tls_read_group()` both parses the group ID and loads the
group into the structure provided. We want to support alternative
implementations of ECDH in the future and for that we need to parse the
group ID without populating an `mbedtls_ecp_group` structure (because
alternative implementations might not use that).
This commit moves the part that parses the group ID to a new function.
There is no need to test the new function directly, because the tests
for `mbedtls_ecp_tls_read_group()` are already implicitly testing it.
There is no intended change in behaviour in this commit.
Add missing compilation guards that broke the build if either GCM or
CCM was not defined.
Add missing guards on test cases that require GCM or CBC.
The build and tests now pass for any subset of {MBEDTLS_CCM_C,
MBEDTLS_GCM_C}. There are still unused variables warnings if neither
is defined.
Refactor `mpi_write_hlp()` to not be recursive, to fix stack overflows.
Iterate over the `mbedtls_mpi` division of the radix requested,
until it is zero. Each iteration, put the residue in the next LSB
of the output buffer. Fixes#2190
Refactor mbedtls_ctr_drbg_update_seed_file and
mbedtls_hmac_drbg_update_seed_file to make the error logic clearer.
The new code does not use fseek, so it works with non-seekable files.
Add a function to configure entropy sources. For testing only.
Use it to test that the library initialization fails properly if there is no
entropy source.
There is a probability that r will be encoded as 31 or less bytes in DER,
so additional padding is added in such case.
Added a signature-part extraction function to tidy up the code further.
Return early from mbedtls_pk_write_pubkey_der - public opaque key
exporting is expected to contain all of the needed data, therefore it shouldn't
be written again.
Return early from mbedtls_pk_write_pubkey_der - public opaque key
exporting is expected to contain all of the needed data, therefore it shouldn't
be written again.
It's better for names in the API to describe the "what" (opaque keys) rather
than the "how" (using PSA), at least since we don't intend to have multiple
function doing the same "what" in different ways in the foreseeable future.
Unfortunately the can_do wrapper does not receive the key context as an
argument, so it cannot check psa_get_key_information(). Later we might want to
change our internal structures to fix this, but for now we'll just restrict
opaque PSA keys to be ECDSA keypairs, as this is the only thing we need for
now. It also simplifies testing a bit (no need to test each key type).
Reasons:
- For the first release, we attempt to support TLS-1.2 only,
- At least TLS-1.0 is known to not work at the moment, as
for CBC ciphersuites the code in mbedtls_ssl_decrypt_buf()
and mbedtls_ssl_encrypt_buf() assumes that mbedtls_cipher_crypt()
updates the structure field for the IV in the cipher context,
which the PSA-based implementation currently doesn't.
This commit modifies the default SSL ticket implementation
from `library/ssl_ticket.c` to use PSA-based cipher context
for ticket creation and parsing.
As in mbedtls_ssl_derive_keys() adapted in an earlier commit,
we allow fallback to the ordinary mbedtls_cipher_setup()
if the provided cipher is not known. We do this even though
we always call mbedtls_ssl_ticket_setup() with AES-GCM
in our own code since this function is public and might
be used with other ciphers by users.
This commit changes the code path in mbedtls_ssl_derive_keys()
responsible for setting up record protection cipher contexts
to attempt to use the new API mbedtls_cipher_setup_psa() in
case MBEDTLS_USE_PSA_CRYPTO is set.
For that, the AEAD tag length must be provided, which is already
computed earlier in mbedtls_ssl_derive_keys() and only needs to be
stored a function scope to be available for mbedtls_cipher_setup_psa().
If mbedtls_cipher_setup_psa() fails cleanly indicating that the
requested cipher is not supported in PSA, we fall through to
the default setup using mbedtls_cipher_setup(). However, we print
a debug message in this case, to allow catching the fallthrough in
tests where we know we're using a cipher which should be supported
by PSA.
mbedtls_cipher_setup_psa() should return
MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE when the requested
cipher is not supported by PSA, so that the caller can
try the original mbedtls_cipher_setup() instead.
The previous version of mbedtls_cipher_setup_psa(), however,
only attempted to translate the cipher mode (GCM, CCM, CBC,
ChaChaPoly, Stream), but didn't consider the underlying
cipher primitive. Hence, it wouldn't fail when attempting
to setup a cipher context for, say, 3DES-CBC, where CBC
is currently supported by PSA but 3DES isn't.
This commit adds a check to mbedtls_cipher_setup_psa()
for whether the requested cipher primitive is available
in the underlying PSA Crypto implementation, and fails
cleanly with MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE if
it is isn't.
For AEAD ciphers, the information contained in mbedtls_cipher_info
is not enough to deduce a PSA algorithm value of type psa_algorithm_t.
This is because mbedtls_cipher_info doesn't contain the AEAD tag
length, while values of type psa_algorithm_t do.
This commit adds the AEAD tag length as a separate parameter
to mbedtls_cipher_setup_psa(). For Non-AEAD ciphers, the value
must be 0.
This approach is preferred over passing psa_algorithm_t directly
in order to keep the changes in existing code using the cipher layer
small.
Mbed TLS cipher layer allows usage of keys for other purposes
than indicated in the `operation` parameter of `mbedtls_cipher_setkey()`.
The semantics of the PSA Crypto API, in contrast, checks key
usage against the key policy.
As a remedy, this commit modifies the PSA key slot setup to
always allow both encryption and decryption.
This commit implements the internal key slot management performed
by PSA-based cipher contexts. Specifically, `mbedtls_cipher_setkey()`
wraps the provided raw key material into a key slot, and
`mbedtls_cipher_free()` destroys that key slot.
This field determines whether a cipher context should
use an external implementation of the PSA Crypto API for
cryptographic operations, or Mbed TLS' own crypto library.
The commit also adds dummy implementations for the cipher API.
The code maintains the invariant that raw and opaque PSKs are never
configured simultaneously, so strictly speaking `ssl_conf_remove_psk()`
need not consider clearing the raw PSK if it has already cleared an
opaque one - and previously, it didn't. However, it doesn't come at
any cost to keep this check as a safe-guard to future unforeseen
situations where opaque and raw PSKs _are_ both present.
In multiple places, it occurrs as the fixed length of
the master secret, so use a constant with a descriptive
name instead. This is reinforced by the fact the some
further occurrences of '48' are semantically different.
There is a probability that r will be encoded as 31 or less bytes in DER,
so additional padding is added in such case.
Added a signature-part extraction function to tidy up the code further.
Reasons:
- For the first release, we attempt to support TLS-1.2 only,
- At least TLS-1.0 is known to not work at the moment, as
for CBC ciphersuites the code in mbedtls_ssl_decrypt_buf()
and mbedtls_ssl_encrypt_buf() assumes that mbedtls_cipher_crypt()
updates the structure field for the IV in the cipher context,
which the PSA-based implementation currently doesn't.
This commit modifies the default SSL ticket implementation
from `library/ssl_ticket.c` to use PSA-based cipher context
for ticket creation and parsing.
As in mbedtls_ssl_derive_keys() adapted in an earlier commit,
we allow fallback to the ordinary mbedtls_cipher_setup()
if the provided cipher is not known. We do this even though
we always call mbedtls_ssl_ticket_setup() with AES-GCM
in our own code since this function is public and might
be used with other ciphers by users.
This commit changes the code path in mbedtls_ssl_derive_keys()
responsible for setting up record protection cipher contexts
to attempt to use the new API mbedtls_cipher_setup_psa() in
case MBEDTLS_USE_PSA_CRYPTO is set.
For that, the AEAD tag length must be provided, which is already
computed earlier in mbedtls_ssl_derive_keys() and only needs to be
stored a function scope to be available for mbedtls_cipher_setup_psa().
If mbedtls_cipher_setup_psa() fails cleanly indicating that the
requested cipher is not supported in PSA, we fall through to
the default setup using mbedtls_cipher_setup(). However, we print
a debug message in this case, to allow catching the fallthrough in
tests where we know we're using a cipher which should be supported
by PSA.
mbedtls_cipher_setup_psa() should return
MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE when the requested
cipher is not supported by PSA, so that the caller can
try the original mbedtls_cipher_setup() instead.
The previous version of mbedtls_cipher_setup_psa(), however,
only attempted to translate the cipher mode (GCM, CCM, CBC,
ChaChaPoly, Stream), but didn't consider the underlying
cipher primitive. Hence, it wouldn't fail when attempting
to setup a cipher context for, say, 3DES-CBC, where CBC
is currently supported by PSA but 3DES isn't.
This commit adds a check to mbedtls_cipher_setup_psa()
for whether the requested cipher primitive is available
in the underlying PSA Crypto implementation, and fails
cleanly with MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE if
it is isn't.
For AEAD ciphers, the information contained in mbedtls_cipher_info
is not enough to deduce a PSA algorithm value of type psa_algorithm_t.
This is because mbedtls_cipher_info doesn't contain the AEAD tag
length, while values of type psa_algorithm_t do.
This commit adds the AEAD tag length as a separate parameter
to mbedtls_cipher_setup_psa(). For Non-AEAD ciphers, the value
must be 0.
This approach is preferred over passing psa_algorithm_t directly
in order to keep the changes in existing code using the cipher layer
small.
Mbed TLS cipher layer allows usage of keys for other purposes
than indicated in the `operation` parameter of `mbedtls_cipher_setkey()`.
The semantics of the PSA Crypto API, in contrast, checks key
usage against the key policy.
As a remedy, this commit modifies the PSA key slot setup to
always allow both encryption and decryption.
This commit implements the internal key slot management performed
by PSA-based cipher contexts. Specifically, `mbedtls_cipher_setkey()`
wraps the provided raw key material into a key slot, and
`mbedtls_cipher_free()` destroys that key slot.
This field determines whether a cipher context should
use an external implementation of the PSA Crypto API for
cryptographic operations, or Mbed TLS' own crypto library.
The commit also adds dummy implementations for the cipher API.
Allow mbedtls_psa_crypto_free to be called twice, or without a prior
call to psa_crypto_init. Keep track of the initialization state more
precisely in psa_crypto_init so that mbedtls_psa_crypto_free knows
what to do.
It's better for names in the API to describe the "what" (opaque keys) rather
than the "how" (using PSA), at least since we don't intend to have multiple
function doing the same "what" in different ways in the foreseeable future.
Unfortunately the can_do wrapper does not receive the key context as an
argument, so it cannot check psa_get_key_information(). Later we might want to
change our internal structures to fix this, but for now we'll just restrict
opaque PSA keys to be ECDSA keypairs, as this is the only thing we need for
now. It also simplifies testing a bit (no need to test each key type).
The code maintains the invariant that raw and opaque PSKs are never
configured simultaneously, so strictly speaking `ssl_conf_remove_psk()`
need not consider clearing the raw PSK if it has already cleared an
opaque one - and previously, it didn't. However, it doesn't come at
any cost to keep this check as a safe-guard to future unforeseen
situations where opaque and raw PSKs _are_ both present.
In multiple places, it occurrs as the fixed length of
the master secret, so use a constant with a descriptive
name instead. This is reinforced by the fact the some
further occurrences of '48' are semantically different.
For Makefiles, enable overriding where includes can come from in order to
enable the parent module to set the include path. This allows the parent
module to specify that its config.h should be used, even when the submodule
when built standalone would use a different config.h.
For CMake, always look in the parent's include folder and our own. List the
parent's include folder first, so that preference is given to parent
include files.
When building Mbed Crypto as a subproject, don't add targets for
libmbedx509 or libmbedtls, as the parent project should build these. The
parent project will define USE_CRYPTO_SUBMODULE variable when using Mbed
Crypto as a submodule, so we can depend on that variable to control whether
or not we build non-crypto libraries.
The new file is conditionally compiled with the new mbedtls
configuration option that Mbed OS would set by default -
`MBEDTLS_PSA_CRYPTO_STORAGE_ITS_C`.
-
Using finer grained control over include directories will allow differnt
targets to use different include files. This will be useful when the
`crypto` subcomponent wants to use its own include files instead of or in
addition to the top level ones.
In mbedtls_mpi_write_binary, avoid leaking the size of the number
through timing or branches, if possible. More precisely, if the number
fits in the output buffer based on its allocated size, the new code's
trace doesn't depend on the value of the number.
When generating keys that have persistent lifetime, we will need
the keys to be in the exported format to save to persistent storage.
This refactoring to separate checking the slots usage from the
exporting of the key data will be necessary for using
psa_internal_export_key in psa_generate_key.
Allow use of persistent keys, including configuring them, importing and
exporting them, and destroying them.
When getting a slot using psa_get_key_slot, there are 3 scenarios that
can occur if the keys lifetime is persistent:
1. Key type is PSA_KEY_TYPE_NONE, no persistent storage entry:
- The key slot is treated as a standard empty key slot
2. Key type is PSA_KEY_TYPE_NONE, persistent storage entry exists:
- Attempt to load the key from persistent storage
3. Key type is not PSA_KEY_TYPE_NONE:
- As checking persistent storage on every use of the key could
be expensive, the persistent key is assumed to be saved in
persistent storage, the in-memory key is continued to be used.
Create a new function psa_remove_key_from_memory() from psa_destroy_key().
This is needed as psa_destroy_key() will remove all key data, including
persistent storage. mbedtls_psa_crypto_free() will now only free in-memory
data and not persistent data.
Create a new function psa_import_key_into_slot() from psa_import_key().
This is common functionality that will be used both when importing a
key and loading a key from persistent storage.
Add a magic header to the storage format used with files. The
header is used as an initial check that the data is what we expect,
rather than garbage data.
Add new functions, psa_load_persistent_key(),
psa_free_persistent_key_data(), and psa_save_persistent_key(), for
managing persistent keys. These functions load to or save from our
internal representation of key slots. Serialization is a concern of the
storage backend implementation and doesn't abstraction-leak into the
lifetime management code.
An initial implementation for files is provided. Additional storage
backends can implement this interface for other storage types.
Mbed TLS version 2.14.0
Resolved conflicts in include/mbedtls/config.h,
tests/scripts/check-files.py, and yotta/create-module.sh by removing yotta.
Resolved conflicts in tests/.jenkins/Jenkinsfile by continuing to run
mbedtls-psa job.
If psa_key_derivation_internal() fails, it's up to the caller to clean
up. Do this, and add a note at the top of
psa_key_derivation_internal() and its auxiliary functions.
There is no non-regression test because at the moment the only way to
trigger an error is a borderline low-memory condition and we don't
have the means to trigger this.
Add missing checks for defined(MBEDTLS_MD_C) around types and
functions that require it (HMAC, HKDF, TLS12_PRF).
Add missing checks for defined(MBEDTLS_ECDSA_DETERMINISTIC) around
code that calls mbedtls_ecdsa_sign_det().
Add missing checks for defined(MBEDTLS_ECDH_C) around ECDH-specific
functions.
The standard prohibits calling memcpy() with NULL pointer
arguments, even if the size argument is 0.
The TLS-1.2 PRF generator setup function previously called
memcpy() with the label and salt as the source, even if
they were of length 0, as exercised by the derive_key_policy
test case in the PSA crypto test suite.
This commit adds guards around the memcpy() calls so that they
are only executed of salt or label have positive length, respectively.
In psa_key_agreement_ecdh, check that the public key is on the same
curve as the private key. The underlying mbedtls API doesn't check.
If the curves don't match, psa_key_agreement_ecdh is practically
guaranteed to return INVALID_ARGUMENT anyway, because way the code is
written, the public point is interpreted on the curve of the private
point, and it is rejected because the point is not on the curve. This
is why the test case "PSA key agreement setup: ECDH, raw: public key
on different curve" passed even before adding this check.
In ECDH key agreement, allow a public key with the OID id-ECDH, not
just a public key with the OID id-ecPublicKey.
Public keys with the OID id-ECDH are not permitted by psa_import_key,
at least for now. There would be no way to use the key for a key
agreement operation anyway in the current API.
psa_key_derivation requires the caller to specify a maximum capacity.
This commit adds a special value that indicates that the maximum
capacity should be the maximum supported by the algorithm. This is
currently meant only for selection algorithms used on the shared
secret produced by a key agreement.
On key import and key generation, for RSA, reject key sizes that are
not a multiple of 8. Such keys are not well-supported in Mbed TLS and
are hardly ever used in practice.
The previous commit removed support for non-byte-aligned keys at the
PSA level. This commit actively rejects such keys and adds
corresponding tests (test keys generated with "openssl genrsa").
Remove the need for an extra function mbedtls_rsa_get_bitlen. Use
mbedtls_rsa_get_len, which is only correct for keys whose size is a
multiple of 8. Key sizes that aren't a multiple of 8 are extremely
rarely used, so in practice this is not a problematic limitation.
Deprecate the module-specific XXX_HW_ACCEL_FAILED and
XXX_FEATURE_UNAVAILABLE errors, as alternative implementations should now
return `MBEDTLS_ERR_PLATFORM_HW_FAILED` and
`MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED`.
ssl_write_handshake_msg() includes the assertion that
`ssl->handshake != NULL` when handling a record which is
(a) a handshake message, and NOT
(b) a HelloRequest.
However, it later calls `ssl_append_flight()` for any
record different from a HelloRequest handshake record,
that is, records satisfying !(a) || !(b), instead of
(a) && !(b) as covered by the assertion (specifically,
CCS or Alert records).
Since `ssl_append_flight()` assumes that `ssl->handshake != NULL`,
this rightfully triggers static analyzer warnings.
This commit expands the scope of the assertion to check
that `ssl->handshake != NULL` for any record which is not
a HelloRequest.
Revert changes for checking whether `MBEDTLS_ECP_RESTARTABLE`
is defined, since it broke the CI. The context is used whether the
restartable feature is defined or not.
1. Checge to check for `MBEDTLS_ECP_RESTARTABLE` for all definitions
of `rs_ctx`.
2. Remove checks for `_ALT` when using `rs_ctx` as they cannot coexist
with the Restartable configuration.
Previously, when checking whether a CRT was revoked through
one of the configured CRLs, the library would only consider
those CRLs whose `issuer` field binary-matches the `subject`
field of the CA that has issued the CRT in question. If those
fields were not binary equivalent, the corresponding CRL was
discarded.
This is not in line with RFC 5280, which demands that the
comparison should be format- and case-insensitive. For example:
- If the same string is once encoded as a `PrintableString` and
another time as a `UTF8String`, they should compare equal.
- If two strings differ only in their choice of upper and lower case
letters, they should compare equal.
This commit fixes this by using the dedicated x509_name_cmp()
function to compare the CRL issuer with the CA subject.
Fixes#1784.
library/certs.c provides some hardcoded certificates that
are used e.g. by the test applications ssl_server2, ssl_client2
in case no certificates are provided on the command line.
The certificates used are from the tests/data_files folder
and have been updated in the latest commits. This commit
updates their copies in certs.c. It also adds comments
indicating the files from which the data is taken, in
order to ease update in the future.
Previous commits have added or modified build instructions for
server1*, server2*, server5*, test-ca*, cli-rsa* in the Makefile
tests/data_files/Makefile, or the apps they invoke have been changed.
This commit regenerates those files to make sure they are in match with
the build instructions.