2019-06-13 20:24:24 +00:00
|
|
|
/*
|
|
|
|
* ARM translation: AArch32 VFP instructions
|
|
|
|
*
|
|
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
|
|
* Copyright (c) 2005-2007 CodeSourcery
|
|
|
|
* Copyright (c) 2007 OpenedHand, Ltd.
|
|
|
|
* Copyright (c) 2019 Linaro, Ltd.
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This file is intended to be included from translate.c; it uses
|
|
|
|
* some macros and definitions provided by that file.
|
|
|
|
* It might be possible to convert it to a standalone .c file eventually.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Include the generated VFP decoder */
|
|
|
|
#include "decode-vfp.inc.c"
|
|
|
|
#include "decode-vfp-uncond.inc.c"
|
2019-06-13 20:30:12 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Check that VFP access is enabled. If it is, do the necessary
|
|
|
|
* M-profile lazy-FP handling and then return true.
|
|
|
|
* If not, emit code to generate an appropriate exception and
|
|
|
|
* return false.
|
|
|
|
* The ignore_vfp_enabled argument specifies that we should ignore
|
|
|
|
* whether VFP is enabled via FPEXC[EN]: this should be true for FMXR/FMRX
|
|
|
|
* accesses to FPSID, FPEXC, MVFR0, MVFR1, MVFR2, and false for all other insns.
|
|
|
|
*/
|
|
|
|
static bool full_vfp_access_check(DisasContext *s, bool ignore_vfp_enabled)
|
|
|
|
{
|
|
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
|
|
|
|
|
|
if (s->fp_excp_el) {
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
|
|
gen_exception_insn(s, 4, EXCP_NOCP, syn_uncategorized(),
|
|
|
|
s->fp_excp_el);
|
|
|
|
} else {
|
|
|
|
gen_exception_insn(s, 4, EXCP_UDEF,
|
|
|
|
syn_fp_access_trap(1, 0xe, false),
|
|
|
|
s->fp_excp_el);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!s->vfp_enabled && !ignore_vfp_enabled) {
|
|
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_M));
|
|
|
|
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
|
|
|
|
default_exception_el(s));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
|
|
/* Handle M-profile lazy FP state mechanics */
|
|
|
|
|
|
|
|
/* Trigger lazy-state preservation if necessary */
|
|
|
|
if (s->v7m_lspact) {
|
|
|
|
/*
|
|
|
|
* Lazy state saving affects external memory and also the NVIC,
|
|
|
|
* so we must mark it as an IO operation for icount.
|
|
|
|
*/
|
|
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
|
|
gen_io_start(tcg_ctx);
|
|
|
|
}
|
|
|
|
gen_helper_v7m_preserve_fp_state(tcg_ctx, tcg_ctx->cpu_env);
|
|
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
|
|
gen_io_end(tcg_ctx);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If the preserve_fp_state helper doesn't throw an exception
|
|
|
|
* then it will clear LSPACT; we don't need to repeat this for
|
|
|
|
* any further FP insns in this TB.
|
|
|
|
*/
|
|
|
|
s->v7m_lspact = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update ownership of FP context: set FPCCR.S to match current state */
|
|
|
|
if (s->v8m_fpccr_s_wrong) {
|
|
|
|
TCGv_i32 tmp;
|
|
|
|
|
2019-06-13 20:35:30 +00:00
|
|
|
tmp = load_cpu_field(s, v7m.fpccr[M_REG_S]);
|
2019-06-13 20:30:12 +00:00
|
|
|
if (s->v8m_secure) {
|
|
|
|
tcg_gen_ori_i32(tcg_ctx, tmp, tmp, R_V7M_FPCCR_S_MASK);
|
|
|
|
} else {
|
|
|
|
tcg_gen_andi_i32(tcg_ctx, tmp, tmp, ~R_V7M_FPCCR_S_MASK);
|
|
|
|
}
|
|
|
|
store_cpu_field(s, tmp, v7m.fpccr[M_REG_S]);
|
|
|
|
/* Don't need to do this for any further FP insns in this TB */
|
|
|
|
s->v8m_fpccr_s_wrong = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s->v7m_new_fp_ctxt_needed) {
|
|
|
|
/*
|
|
|
|
* Create new FP context by updating CONTROL.FPCA, CONTROL.SFPA
|
|
|
|
* and the FPSCR.
|
|
|
|
*/
|
|
|
|
TCGv_i32 control, fpscr;
|
|
|
|
uint32_t bits = R_V7M_CONTROL_FPCA_MASK;
|
|
|
|
|
2019-06-13 20:35:30 +00:00
|
|
|
fpscr = load_cpu_field(s, v7m.fpdscr[s->v8m_secure]);
|
2019-06-13 20:30:12 +00:00
|
|
|
gen_helper_vfp_set_fpscr(tcg_ctx, tcg_ctx->cpu_env, fpscr);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, fpscr);
|
|
|
|
/*
|
|
|
|
* We don't need to arrange to end the TB, because the only
|
|
|
|
* parts of FPSCR which we cache in the TB flags are the VECLEN
|
|
|
|
* and VECSTRIDE, and those don't exist for M-profile.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (s->v8m_secure) {
|
|
|
|
bits |= R_V7M_CONTROL_SFPA_MASK;
|
|
|
|
}
|
2019-06-13 20:35:30 +00:00
|
|
|
control = load_cpu_field(s, v7m.control[M_REG_S]);
|
2019-06-13 20:30:12 +00:00
|
|
|
tcg_gen_ori_i32(tcg_ctx, control, control, bits);
|
|
|
|
store_cpu_field(s, control, v7m.control[M_REG_S]);
|
|
|
|
/* Don't need to do this for any further FP insns in this TB */
|
|
|
|
s->v7m_new_fp_ctxt_needed = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
2019-06-13 20:41:19 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The most usual kind of VFP access check, for everything except
|
|
|
|
* FMXR/FMRX to the always-available special registers.
|
|
|
|
*/
|
|
|
|
static bool vfp_access_check(DisasContext *s)
|
|
|
|
{
|
|
|
|
return full_vfp_access_check(s, false);
|
|
|
|
}
|
2019-06-13 20:56:21 +00:00
|
|
|
|
|
|
|
static bool trans_VSEL(DisasContext *s, arg_VSEL *a)
|
|
|
|
{
|
|
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
|
|
uint32_t rd, rn, rm;
|
|
|
|
bool dp = a->dp;
|
|
|
|
|
|
|
|
if (!dc_isar_feature(aa32_vsel, s)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
|
|
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
|
|
|
|
((a->vm | a->vn | a->vd) & 0x10)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
rd = a->vd;
|
|
|
|
rn = a->vn;
|
|
|
|
rm = a->vm;
|
|
|
|
|
|
|
|
if (!vfp_access_check(s)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dp) {
|
|
|
|
TCGv_i64 frn, frm, dest;
|
|
|
|
TCGv_i64 tmp, zero, zf, nf, vf;
|
|
|
|
|
|
|
|
zero = tcg_const_i64(tcg_ctx, 0);
|
|
|
|
|
|
|
|
frn = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
frm = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
dest = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
|
|
|
|
zf = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
nf = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
vf = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
|
|
|
|
tcg_gen_extu_i32_i64(tcg_ctx, zf, tcg_ctx->cpu_ZF);
|
|
|
|
tcg_gen_ext_i32_i64(tcg_ctx, nf, tcg_ctx->cpu_NF);
|
|
|
|
tcg_gen_ext_i32_i64(tcg_ctx, vf, tcg_ctx->cpu_VF);
|
|
|
|
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_load_reg64(s, frn, rn);
|
|
|
|
neon_load_reg64(s, frm, rm);
|
2019-06-13 20:56:21 +00:00
|
|
|
switch (a->cc) {
|
|
|
|
case 0: /* eq: Z */
|
|
|
|
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_EQ, dest, zf, zero,
|
|
|
|
frn, frm);
|
|
|
|
break;
|
|
|
|
case 1: /* vs: V */
|
|
|
|
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_LT, dest, vf, zero,
|
|
|
|
frn, frm);
|
|
|
|
break;
|
|
|
|
case 2: /* ge: N == V -> N ^ V == 0 */
|
|
|
|
tmp = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
tcg_gen_xor_i64(tcg_ctx, tmp, vf, nf);
|
|
|
|
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
|
|
|
|
frn, frm);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, tmp);
|
|
|
|
break;
|
|
|
|
case 3: /* gt: !Z && N == V */
|
|
|
|
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_NE, dest, zf, zero,
|
|
|
|
frn, frm);
|
|
|
|
tmp = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
tcg_gen_xor_i64(tcg_ctx, tmp, vf, nf);
|
|
|
|
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
|
|
|
|
dest, frm);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, tmp);
|
|
|
|
break;
|
|
|
|
}
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_store_reg64(s, dest, rd);
|
2019-06-13 20:56:21 +00:00
|
|
|
tcg_temp_free_i64(tcg_ctx, frn);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, frm);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, dest);
|
|
|
|
|
|
|
|
tcg_temp_free_i64(tcg_ctx, zf);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, nf);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, vf);
|
|
|
|
|
|
|
|
tcg_temp_free_i64(tcg_ctx, zero);
|
|
|
|
} else {
|
|
|
|
TCGv_i32 frn, frm, dest;
|
|
|
|
TCGv_i32 tmp, zero;
|
|
|
|
|
|
|
|
zero = tcg_const_i32(tcg_ctx, 0);
|
|
|
|
|
|
|
|
frn = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
frm = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
dest = tcg_temp_new_i32(tcg_ctx);
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_load_reg32(s, frn, rn);
|
|
|
|
neon_load_reg32(s, frm, rm);
|
2019-06-13 20:56:21 +00:00
|
|
|
switch (a->cc) {
|
|
|
|
case 0: /* eq: Z */
|
|
|
|
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_EQ, dest, tcg_ctx->cpu_ZF, zero,
|
|
|
|
frn, frm);
|
|
|
|
break;
|
|
|
|
case 1: /* vs: V */
|
|
|
|
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_LT, dest, tcg_ctx->cpu_VF, zero,
|
|
|
|
frn, frm);
|
|
|
|
break;
|
|
|
|
case 2: /* ge: N == V -> N ^ V == 0 */
|
|
|
|
tmp = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
tcg_gen_xor_i32(tcg_ctx, tmp, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF);
|
|
|
|
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
|
|
|
|
frn, frm);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, tmp);
|
|
|
|
break;
|
|
|
|
case 3: /* gt: !Z && N == V */
|
|
|
|
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_NE, dest, tcg_ctx->cpu_ZF, zero,
|
|
|
|
frn, frm);
|
|
|
|
tmp = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
tcg_gen_xor_i32(tcg_ctx, tmp, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF);
|
|
|
|
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
|
|
|
|
dest, frm);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, tmp);
|
|
|
|
break;
|
|
|
|
}
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_store_reg32(s, dest, rd);
|
2019-06-13 20:56:21 +00:00
|
|
|
tcg_temp_free_i32(tcg_ctx, frn);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, frm);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, dest);
|
|
|
|
|
|
|
|
tcg_temp_free_i32(tcg_ctx, zero);
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool trans_VMINMAXNM(DisasContext *s, arg_VMINMAXNM *a)
|
|
|
|
{
|
|
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
|
|
uint32_t rd, rn, rm;
|
|
|
|
bool dp = a->dp;
|
|
|
|
bool vmin = a->op;
|
|
|
|
TCGv_ptr fpst;
|
|
|
|
|
|
|
|
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
|
|
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
|
|
|
|
((a->vm | a->vn | a->vd) & 0x10)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
rd = a->vd;
|
|
|
|
rn = a->vn;
|
|
|
|
rm = a->vm;
|
|
|
|
|
|
|
|
if (!vfp_access_check(s)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
fpst = get_fpstatus_ptr(s, 0);
|
|
|
|
|
|
|
|
if (dp) {
|
|
|
|
TCGv_i64 frn, frm, dest;
|
|
|
|
|
|
|
|
frn = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
frm = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
dest = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_load_reg64(s, frn, rn);
|
|
|
|
neon_load_reg64(s, frm, rm);
|
2019-06-13 20:56:21 +00:00
|
|
|
if (vmin) {
|
|
|
|
gen_helper_vfp_minnumd(tcg_ctx, dest, frn, frm, fpst);
|
|
|
|
} else {
|
|
|
|
gen_helper_vfp_maxnumd(tcg_ctx, dest, frn, frm, fpst);
|
|
|
|
}
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_store_reg64(s, dest, rd);
|
2019-06-13 20:56:21 +00:00
|
|
|
tcg_temp_free_i64(tcg_ctx, frn);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, frm);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, dest);
|
|
|
|
} else {
|
|
|
|
TCGv_i32 frn, frm, dest;
|
|
|
|
|
|
|
|
frn = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
frm = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
dest = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_load_reg32(s, frn, rn);
|
|
|
|
neon_load_reg32(s, frm, rm);
|
2019-06-13 20:56:21 +00:00
|
|
|
if (vmin) {
|
|
|
|
gen_helper_vfp_minnums(tcg_ctx, dest, frn, frm, fpst);
|
|
|
|
} else {
|
|
|
|
gen_helper_vfp_maxnums(tcg_ctx, dest, frn, frm, fpst);
|
|
|
|
}
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_store_reg32(s, dest, rd);
|
2019-06-13 20:56:21 +00:00
|
|
|
tcg_temp_free_i32(tcg_ctx, frn);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, frm);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
tcg_temp_free_ptr(tcg_ctx, fpst);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Table for converting the most common AArch32 encoding of
|
|
|
|
* rounding mode to arm_fprounding order (which matches the
|
|
|
|
* common AArch64 order); see ARM ARM pseudocode FPDecodeRM().
|
|
|
|
*/
|
|
|
|
static const uint8_t fp_decode_rm[] = {
|
|
|
|
FPROUNDING_TIEAWAY,
|
|
|
|
FPROUNDING_TIEEVEN,
|
|
|
|
FPROUNDING_POSINF,
|
|
|
|
FPROUNDING_NEGINF,
|
|
|
|
};
|
|
|
|
|
|
|
|
static bool trans_VRINT(DisasContext *s, arg_VRINT *a)
|
|
|
|
{
|
|
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
|
|
uint32_t rd, rm;
|
|
|
|
bool dp = a->dp;
|
|
|
|
TCGv_ptr fpst;
|
|
|
|
TCGv_i32 tcg_rmode;
|
|
|
|
int rounding = fp_decode_rm[a->rm];
|
|
|
|
|
|
|
|
if (!dc_isar_feature(aa32_vrint, s)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
|
|
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
|
|
|
|
((a->vm | a->vd) & 0x10)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
rd = a->vd;
|
|
|
|
rm = a->vm;
|
|
|
|
|
|
|
|
if (!vfp_access_check(s)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
fpst = get_fpstatus_ptr(s, 0);
|
|
|
|
|
|
|
|
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rounding));
|
|
|
|
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
|
|
|
|
|
|
|
|
if (dp) {
|
|
|
|
TCGv_i64 tcg_op;
|
|
|
|
TCGv_i64 tcg_res;
|
|
|
|
tcg_op = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
tcg_res = tcg_temp_new_i64(tcg_ctx);
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_load_reg64(s, tcg_op, rm);
|
2019-06-13 20:56:21 +00:00
|
|
|
gen_helper_rintd(tcg_ctx, tcg_res, tcg_op, fpst);
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_store_reg64(s, tcg_res, rd);
|
2019-06-13 20:56:21 +00:00
|
|
|
tcg_temp_free_i64(tcg_ctx, tcg_op);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, tcg_res);
|
|
|
|
} else {
|
|
|
|
TCGv_i32 tcg_op;
|
|
|
|
TCGv_i32 tcg_res;
|
|
|
|
tcg_op = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
tcg_res = tcg_temp_new_i32(tcg_ctx);
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_load_reg32(s, tcg_op, rm);
|
2019-06-13 20:56:21 +00:00
|
|
|
gen_helper_rints(tcg_ctx, tcg_res, tcg_op, fpst);
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_store_reg32(s, tcg_res, rd);
|
2019-06-13 20:56:21 +00:00
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_op);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_res);
|
|
|
|
}
|
|
|
|
|
|
|
|
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
|
|
|
|
|
|
|
|
tcg_temp_free_ptr(tcg_ctx, fpst);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool trans_VCVT(DisasContext *s, arg_VCVT *a)
|
|
|
|
{
|
|
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
|
|
uint32_t rd, rm;
|
|
|
|
bool dp = a->dp;
|
|
|
|
TCGv_ptr fpst;
|
|
|
|
TCGv_i32 tcg_rmode, tcg_shift;
|
|
|
|
int rounding = fp_decode_rm[a->rm];
|
|
|
|
bool is_signed = a->op;
|
|
|
|
|
|
|
|
if (!dc_isar_feature(aa32_vcvt_dr, s)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
|
|
if (dp && !dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
rd = a->vd;
|
|
|
|
rm = a->vm;
|
|
|
|
|
|
|
|
if (!vfp_access_check(s)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
fpst = get_fpstatus_ptr(s, 0);
|
|
|
|
|
|
|
|
tcg_shift = tcg_const_i32(tcg_ctx, 0);
|
|
|
|
|
|
|
|
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rounding));
|
|
|
|
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
|
|
|
|
|
|
|
|
if (dp) {
|
|
|
|
TCGv_i64 tcg_double, tcg_res;
|
|
|
|
TCGv_i32 tcg_tmp;
|
|
|
|
tcg_double = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
tcg_res = tcg_temp_new_i64(tcg_ctx);
|
|
|
|
tcg_tmp = tcg_temp_new_i32(tcg_ctx);
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_load_reg64(s, tcg_double, rm);
|
2019-06-13 20:56:21 +00:00
|
|
|
if (is_signed) {
|
|
|
|
gen_helper_vfp_tosld(tcg_ctx, tcg_res, tcg_double, tcg_shift, fpst);
|
|
|
|
} else {
|
|
|
|
gen_helper_vfp_tould(tcg_ctx, tcg_res, tcg_double, tcg_shift, fpst);
|
|
|
|
}
|
|
|
|
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_tmp, tcg_res);
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_store_reg32(s, tcg_tmp, rd);
|
2019-06-13 20:56:21 +00:00
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_tmp);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, tcg_res);
|
|
|
|
tcg_temp_free_i64(tcg_ctx, tcg_double);
|
|
|
|
} else {
|
|
|
|
TCGv_i32 tcg_single, tcg_res;
|
|
|
|
tcg_single = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
tcg_res = tcg_temp_new_i32(tcg_ctx);
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_load_reg32(s, tcg_single, rm);
|
2019-06-13 20:56:21 +00:00
|
|
|
if (is_signed) {
|
|
|
|
gen_helper_vfp_tosls(tcg_ctx, tcg_res, tcg_single, tcg_shift, fpst);
|
|
|
|
} else {
|
|
|
|
gen_helper_vfp_touls(tcg_ctx, tcg_res, tcg_single, tcg_shift, fpst);
|
|
|
|
}
|
target/arm: Add helpers for VFP register loads and stores
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
2019-06-13 21:01:57 +00:00
|
|
|
neon_store_reg32(s, tcg_res, rd);
|
2019-06-13 20:56:21 +00:00
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_res);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_single);
|
|
|
|
}
|
|
|
|
|
|
|
|
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
|
|
|
|
|
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_shift);
|
|
|
|
|
|
|
|
tcg_temp_free_ptr(tcg_ctx, fpst);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|