unicorn/qemu/include/exec/ram_addr.h

342 lines
11 KiB
C
Raw Normal View History

2015-08-21 07:04:50 +00:00
/*
* Declarations for cpu physical memory functions
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*
*/
/*
* This header is for use by exec.c and memory.c ONLY. Do not include it.
* The functions declared here will be removed soon.
*/
#ifndef RAM_ADDR_H
#define RAM_ADDR_H
#include "uc_priv.h"
#ifndef CONFIG_USER_ONLY
#include "hw/xen/xen.h"
#include "exec/ramlist.h"
2015-08-21 07:04:50 +00:00
struct RAMBlock {
struct MemoryRegion *mr;
uint8_t *host;
ram_addr_t offset;
ram_addr_t used_length;
ram_addr_t max_length;
void (*resized)(const char*, uint64_t length, void *host);
uint32_t flags;
char idstr[256];
/* Reads can take either the iothread or the ramlist lock.
* Writes must take both locks.
*/
QLIST_ENTRY(RAMBlock) next;
int fd;
};
static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
{
return (b && b->host && offset < b->used_length) ? true : false;
}
static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
{
assert(offset < block->used_length);
assert(block->host);
return (char *)block->host + offset;
}
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr, Error **errp);
RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
MemoryRegion *mr, Error **errp);
2015-08-21 07:04:50 +00:00
int qemu_get_ram_fd(struct uc_struct *uc, ram_addr_t addr);
void *qemu_get_ram_block_host_ptr(struct uc_struct *uc, ram_addr_t addr);
void qemu_ram_free(struct uc_struct *c, ram_addr_t addr);
int qemu_ram_resize(struct uc_struct *c, ram_addr_t base, ram_addr_t newsize, Error **errp);
#define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
#define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
2015-08-21 07:04:50 +00:00
static inline bool cpu_physical_memory_get_dirty(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length,
unsigned client)
{
DirtyMemoryBlocks *blocks;
unsigned long end, page;
unsigned long idx, offset, base;
bool dirty = false;
2015-08-21 07:04:50 +00:00
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
// Unicorn: commented out
//rcu_read_lock();
// Unicorn: atomic_read used instead of atomic_rcu_read
blocks = atomic_read(&uc->ram_list.dirty_memory[client]);
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
base = page - offset;
while (page < end) {
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
unsigned long num = next - base;
unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
if (found < num) {
dirty = true;
break;
}
page = next;
idx++;
offset = 0;
base += DIRTY_MEMORY_BLOCK_SIZE;
}
// Unicorn: commented out
//rcu_read_unlock();
return dirty;
2015-08-21 07:04:50 +00:00
}
static inline bool cpu_physical_memory_all_dirty(struct uc_struct *uc, ram_addr_t start,
2015-08-21 07:04:50 +00:00
ram_addr_t length,
unsigned client)
{
DirtyMemoryBlocks *blocks;
unsigned long end, page;
unsigned long idx, offset, base;
bool dirty = true;
2015-08-21 07:04:50 +00:00
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
// Unicorn: commented out
//rcu_read_lock();
// Unicorn: atomic_read used instead of atomic_rcu_read
blocks = atomic_read(&uc->ram_list.dirty_memory[client]);
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
base = page - offset;
while (page < end) {
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
unsigned long num = next - base;
unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
if (found < num) {
dirty = false;
break;
}
page = next;
idx++;
offset = 0;
base += DIRTY_MEMORY_BLOCK_SIZE;
}
// Unicorn: commented out
//rcu_read_unlock();
return dirty;
2015-08-21 07:04:50 +00:00
}
static inline bool cpu_physical_memory_get_dirty_flag(struct uc_struct *uc, ram_addr_t addr,
unsigned client)
{
return cpu_physical_memory_get_dirty(uc, addr, 1, client);
}
static inline bool cpu_physical_memory_is_clean(struct uc_struct *uc, ram_addr_t addr)
{
return !cpu_physical_memory_get_dirty_flag(uc, addr, DIRTY_MEMORY_CODE);
2015-08-21 07:04:50 +00:00
}
static inline bool cpu_physical_memory_range_includes_clean(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length, uint8_t mask)
2015-08-21 07:04:50 +00:00
{
uint8_t ret = 0;
if (mask & (1 << DIRTY_MEMORY_CODE) &&
!cpu_physical_memory_all_dirty(uc, start, length, DIRTY_MEMORY_CODE)) {
ret |= (1 << DIRTY_MEMORY_CODE);
}
return ret;
2015-08-21 07:04:50 +00:00
}
static inline void cpu_physical_memory_set_dirty_flag(struct uc_struct *uc, ram_addr_t addr,
unsigned client)
{
unsigned long page, idx, offset;
DirtyMemoryBlocks *blocks;
2015-08-21 07:04:50 +00:00
assert(client < DIRTY_MEMORY_NUM);
page = addr >> TARGET_PAGE_BITS;
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
// Unicorn: commented out
//rcu_read_lock();
// Unicorn: atomic_read used instead of atomic_rcu_read
blocks = atomic_read(&uc->ram_list.dirty_memory[client]);
set_bit_atomic(offset, blocks->blocks[idx]);
// Unicorn: commented out
//rcu_read_unlock();
2015-08-21 07:04:50 +00:00
}
static inline void cpu_physical_memory_set_dirty_range(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length,
uint8_t mask)
2015-08-21 07:04:50 +00:00
{
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
2015-08-21 07:04:50 +00:00
unsigned long end, page;
unsigned long idx, offset, base;
int i;
2015-08-21 07:04:50 +00:00
if (!mask && !xen_enabled()) {
return;
}
2015-08-21 07:04:50 +00:00
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
// Unicorn: commented out
//rcu_read_lock();
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
// Unicorn: atomic_read used instead of atomic_rcu_read
blocks[i] = atomic_read(&uc->ram_list.dirty_memory[i]);
}
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
base = page - offset;
while (page < end) {
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
offset, next - page);
}
page = next;
idx++;
offset = 0;
base += DIRTY_MEMORY_BLOCK_SIZE;
}
// Unicorn: commented out
//rcu_read_unlock();
2015-08-21 07:04:50 +00:00
}
#if !defined(_WIN32)
static inline void cpu_physical_memory_set_dirty_lebitmap(struct uc_struct *uc, unsigned long *bitmap,
ram_addr_t start,
ram_addr_t pages)
{
unsigned long i, j;
unsigned long page_number, c;
hwaddr addr;
ram_addr_t ram_addr;
unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
/* start address is aligned at the start of a word? */
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
(hpratio == 1)) {
unsigned long **blocks[DIRTY_MEMORY_NUM];
unsigned long idx;
unsigned long offset;
2015-08-21 07:04:50 +00:00
long k;
long nr = BITS_TO_LONGS(pages);
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
DIRTY_MEMORY_BLOCK_SIZE);
// Unicorn: commented out
//rcu_read_lock();
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
// Unicorn: atomic_read used instead of atomic_rcu_read
blocks[i] = atomic_read(&uc->ram_list.dirty_memory[i])->blocks;
}
2015-08-21 07:04:50 +00:00
for (k = 0; k < nr; k++) {
if (bitmap[k]) {
unsigned long temp = leul_to_cpu(bitmap[k]);
if (tcg_enabled(uc)) {
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
}
2015-08-21 07:04:50 +00:00
}
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
offset = 0;
idx++;
}
2015-08-21 07:04:50 +00:00
}
// Unicorn: commented out
//rcu_read_unlock();
2015-08-21 07:04:50 +00:00
} else {
uint8_t clients = tcg_enabled(uc) ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
2015-08-21 07:04:50 +00:00
/*
* bitmap-traveling is faster than memory-traveling (for addr...)
* especially when most of the memory is not dirty.
*/
for (i = 0; i < len; i++) {
if (bitmap[i] != 0) {
c = leul_to_cpu(bitmap[i]);
do {
j = ctzl(c);
c &= ~(1ul << j);
page_number = (i * HOST_LONG_BITS + j) * hpratio;
addr = page_number * TARGET_PAGE_SIZE;
ram_addr = start + addr;
cpu_physical_memory_set_dirty_range(uc, ram_addr,
TARGET_PAGE_SIZE * hpratio, clients);
2015-08-21 07:04:50 +00:00
} while (c != 0);
}
}
}
}
#endif /* not _WIN32 */
bool cpu_physical_memory_test_and_clear_dirty(struct uc_struct *uc,
ram_addr_t start,
ram_addr_t length,
unsigned client);
2015-08-21 07:04:50 +00:00
static inline void cpu_physical_memory_clear_dirty_range(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length)
2015-08-21 07:04:50 +00:00
{
cpu_physical_memory_test_and_clear_dirty(uc, start, length, DIRTY_MEMORY_CODE);
2015-08-21 07:04:50 +00:00
}
#endif
#endif