The current implementation returns 1 (PMP check success) if the address is in
range even if the PMP entry is off. This is a bug.
For example, if there is a PMP check in S-Mode which is in range, but its PMP
entry is off, this will succeed, which it should not.
The patch fixes this bug by only checking the PMP permissions if the address is
in range and its corresponding PMP entry it not off. Otherwise, it will keep
the ret = -1 which will be checked and handled correctly at the end of the
function.
Backports commit f8162068f18f2f264a0355938784f54089234211 from qemu
The current PMP check function checks for env->priv which is not the effective
memory privilege mode.
For example, mstatus.MPRV could be set while executing in M-Mode, and in that
case the privilege mode for the PMP check should be S-Mode rather than M-Mode
(in env->priv) if mstatus.MPP == PRV_S.
This patch passes the effective memory privilege mode to the PMP check.
Functions that call the PMP check should pass the correct memory privilege mode
after reading mstatus' MPRV/MPP or hstatus.SPRV (if Hypervisor mode exists).
Backports commit cc0fdb298517ce56c770803447f8b02a90271152 from qemu
A wrong address is passed to `pmp_is_in_range` while checking if a
memory access is within a PMP range.
Since the ending address of the pmp range (i.e., pmp_state.addr[i].ea)
is set to the last address in the range (i.e., pmp base + pmp size - 1),
memory accesses containg the last address in the range will always fail.
For example, assume that a PMP range is 4KB from 0x87654000 such that
the last address within the range is 0x87654fff.
1-byte access to 0x87654fff should be considered to be fully inside the
PMP range.
However the access now fails and complains partial inclusion because
pmp_is_in_range(env, i, addr + size) returns 0 whereas
pmp_is_in_range(env, i, addr) returns 1.
Backports commit 49db9fa1fd7c252596b53cf80876e06f407d09ed from qemu
This ports over the RISC-V architecture from Qemu. This is currently a
very barebones transition. No code hooking or any fancy stuff.
Currently, you can feed it instructions and query the CPU state itself.
This also allows choosing whether or not RISC-V 32-bit or RISC-V 64-bit
is desirable through Unicorn's interface as well.
Extremely basic examples of executing a single instruction have been
added to the samples directory to help demonstrate how to use the basic
functionality.