Commit 57cb38b included qapi/error.h into qemu/osdep.h to get the
Error typedef. Since then, we've moved to include qemu/osdep.h
everywhere. Its file comment explains: "To avoid getting into
possible circular include dependencies, this file should not include
any other QEMU headers, with the exceptions of config-host.h,
compiler.h, os-posix.h and os-win32.h, all of which are doing a
similar job to this file and are under similar constraints."
qapi/error.h doesn't do a similar job, and it doesn't adhere to
similar constraints: it includes qapi-types.h. That's in excess of
100KiB of crap most .c files don't actually need.
Add the typedef to qemu/typedefs.h, and include that instead of
qapi/error.h. Include qapi/error.h in .c files that need it and don't
get it now. Include qapi-types.h in qom/object.h for uint16List.
Update scripts/clean-includes accordingly. Update it further to match
reality: replace config.h by config-target.h, add sysemu/os-posix.h,
sysemu/os-win32.h. Update the list of includes in the qemu/osdep.h
comment quoted above similarly.
This reduces the number of objects depending on qapi/error.h from "all
of them" to less than a third. Unfortunately, the number depending on
qapi-types.h shrinks only a little. More work is needed for that one.
Backports commit da34e65cb4025728566d6504a99916f6e7e1dd6a from qemu
As soon as setjmp.h is included from qemu/osdep.h, those old include
statements are no longer needed.
Add also setjmp.h to the list in scripts/clean-includes.
Backports commit 8ff98f1ed2f50cd05c3c5027c7efdf69859ec664 from qemu
Currently the ObjectProperty iterator API works as follows:
ObjectPropertyIterator *iter;
iter = object_property_iter_init(obj);
while ((prop = object_property_iter_next(iter))) {
...
}
object_property_iter_free(iter);
This has the benefit that the ObjectPropertyIterator struct
can be opaque, but has the downside that callers need to
explicitly call a free function. It is also not in keeping
with iterator style used elsewhere in QEMU/GLib2.
This patch changes the API to use stack allocation instead:
ObjectPropertyIterator iter;
object_property_iter_init(&iter, obj);
while ((prop = object_property_iter_next(&iter))) {
...
}
Backports commit 7746abd8e9ee9db20c0b0fdb19504f163ba3cbea from qemu
When there are many instances of a given class, registering
properties against the instance is wasteful of resources. The
majority of objects have a statically defined list of possible
properties, so most of the properties are easily registerable
against the class. Only those properties which are conditionally
registered at runtime need be recorded against the klass.
Registering properties against classes also makes it possible
to provide static introspection of QOM - currently introspection
is only possible after creating an instance of a class, which
severely limits its usefulness.
This impl only supports simple scalar properties. It does not
attempt to allow child object / link object properties against
the class. There are ways to support those too, but it would
make this patch more complicated, so it is left as an exercise
for the future.
There is no equivalent to object_property_del() provided, since
classes must be immutable once they are defined.
Backports commit 16bf7f522a2ff68993f80631ed86254c71eaf5d4 from qemu
ARM GICv3 systems with large number of CPUs create lots of IRQ pins. Since
every pin is represented as a property, number of these properties becomes
very large. Every property add first makes sure there's no duplicates.
Traversing the list becomes very slow, therefore QEMU initialization takes
significant time (several seconds for e. g. 16 CPUs).
This patch replaces list with GHashTable, making lookup very fast. The only
drawback is that object_child_foreach() and object_child_foreach_recursive()
cannot add or remove properties during traversal, since GHashTableIter does
not have modify-safe version. However, the code seems not to modify objects
via these functions.
Backports commit b604a854e843505007c59d68112c654556102a20 from qemu
The description of object_property_get_int() stated that on an error
it returns NULL. This is not the case and the function will return -1
if an error occurs. Update the commented documentation accordingly.
Backports commit b29b47e9b35017428904e0e934700877dfaabe73 from qemu
When QEMU watchpoint matches, that is not definitely an architectural
watchpoint match yet. If it is a stop-before-access watchpoint then that
is hardly possible to ignore it after throwing a TCG exception.
A special callback is introduced to check for architectural watchpoint
match before raising a TCG exception.
Backports commit 568496c0c0f1863a4bc18539962cd8d81baa4e30 from qemu
Similar to the previous patch, it's nice to have all functions
in the tree that involve a visitor and a name for conversion to
or from QAPI to consistently stick the 'name' parameter next
to the Visitor parameter.
Done by manually changing include/qom/object.h and qom/object.c,
then running this Coccinelle script and touching up the fallout
(Coccinelle insisted on adding some trailing whitespace).
@ rule1 @
identifier fn;
typedef Object, Visitor, Error;
identifier obj, v, opaque, name, errp;
@@
void fn
- (Object *obj, Visitor *v, void *opaque, const char *name,
+ (Object *obj, Visitor *v, const char *name, void *opaque,
Error **errp) { ... }
@@
identifier rule1.fn;
expression obj, v, opaque, name, errp;
@@
fn(obj, v,
- opaque, name,
+ name, opaque,
errp)
Backports commit d7bce9999df85c56c8cb1fcffd944d51bff8ff48 from qemu
No need to repeat 'struct Visitor' when we already have it in
typedefs.h. Omitting the redundant 'struct' also makes a later
patch easier to search for all object property callbacks that
are associated with a Visitor.
Backports commit 4fa45492c3387c0fa51e8e81160ac9a7814f44a2 from qemu
Add a MemoryRegion property, which if set is used to construct
the CPU's initial (default) AddressSpace.
Backports commit 6731d864f80938e404dc3e5eb7f6b76b891e3e43 from qemu
When looking up the MemoryRegionSection for the new TLB entry in
tlb_set_page_with_attrs(), use cpu_asidx_from_attrs() to determine
the correct address space index for the lookup, and pass it into
address_space_translate_for_iotlb().
Backports commit d7898cda81b6efa6b2d7a749882695cdcf280eaa from qemu
Add a new method to CPUClass which the memory system core can
use to obtain the correct address space index to use for a memory
access with a given set of transaction attributes, together
with the wrapper function cpu_asidx_from_attrs() which implements
the default behaviour ("always use asidx 0") for CPU classes
which don't provide the method.
Backports commit d7f25a9e6a6b2c69a0be6033903b7d6087bcf47d from qemu
Add a new optional method get_phys_page_attrs_debug() to CPUClass.
This is like the existing get_phys_page_debug(), but also returns
the memory transaction attributes to use for the access.
This will be necessary for CPUs which have multiple address
spaces and use the attributes to select the correct address
space.
We provide a wrapper function cpu_get_phys_page_attrs_debug()
which falls back to the existing get_phys_page_debug(), so we
don't need to change every target CPU.
Backports commit 1dc6fb1f5cc5cea5ba01010a19c6acefd0ae4b73 from qemu
Allow multiple calls to cpu_address_space_init(); each
call adds an entry to the cpu->ases array at the specified
index. It is up to the target-specific CPU code to actually use
these extra address spaces.
Since this multiple AddressSpace support won't work with
KVM, add an assertion to avoid confusing failures.
Backports commit 12ebc9a76dd7702aef0a3618717a826c19c34ef4 from qemu
Rather than setting cpu->as unconditionally in cpu_exec_init
(and then having target-i386 override this later), don't set
it until the first call to cpu_address_space_init.
This requires us to initialise the address space for
both TCG and KVM (KVM doesn't need the AS listener but
it does require cpu->as to be set).
For target CPUs which don't set up any address spaces (currently
everything except i386), add the default address_space_memory
in qemu_init_vcpu().
Backports commit 56943e8cc14b7eeeab67d1942fa5d8bcafe3e53f from qemu
Some users of QOM need to be able to iterate over properties
defined against an object instance. Currently they are just
directly using the QTAIL macros against the object properties
data structure.
This is bad because it exposes them to changes in the data
structure used to store properties, as well as changes in
functionality such as ability to register properties against
the class.
This provides an ObjectPropertyIterator struct which will
insulate the callers from the particular data structure
used to store properties. It can be used thus
ObjectProperty *prop;
ObjectPropertyIterator *iter;
iter = object_property_iter_init(obj);
while ((prop = object_property_iter_next(iter))) {
... do something with prop ...
}
object_property_iter_free(iter);
Backports commit a00c94824126901168bca5b89147f9e334a49e87 from qemu
Reduce the boilerplate required for each target. At the same time,
move the test for breakpoint after calling tcg_gen_insn_start.
Note that arm and aarch64 do not use cpu_breakpoint_test, but still
move the inline test down after tcg_gen_insn_start.
Backports commit b933066ae03d924a92b2616b4a24e7d91cd5b841 from qemu
CPUState::crash_occurred field inside CPUState marks
that guest crash occurred. This value is added into
cpu common migration subsection.
Backports commit bac05aa9a77af1ca7972c8dc07560f4daa7c2dfc from qemu
After the previous patch, TLBs will be flushed on every change to
the memory mapping. This patch augments that with synchronization
of the MemoryRegionSections referred to in the iotlb array.
With this change, it is guaranteed that iotlb_to_region will access
the correct memory map, even once the TLB will be accessed outside
the BQL.
Backports commit 9d82b5a792236db31a75b9db5c93af69ac07c7c5 from qemu
This commit fixes the following issues:
- Any unmapped/free'd memory regions (MemoryRegion instances) are not
removed from the object property linked list of its owner (which is
always qdev_get_machine(uc)). This issue makes adding new memory
mapping by calling mem_map() or mem_map_ptr() slower as more and more
memory pages are mapped and unmapped - yes, even if those memory pages
are unmapped, they still impact the speed of future memory page
mappings due to this issue.
- FlatView is not reconstructed after a memory region is freed during
unmapping, which leads to a use-after-free the next time a new memory
region is mapped in address_space_update_topology().