unicorn/qemu/include/qemu/host-utils.h
Peter Maydell b8b70dfcd2
Drop QEMU_GNUC_PREREQ() checks for gcc older than 4.1
We already require gcc 4.1 or newer (for the atomic
support), so the fallback codepaths for older gcc
versions than that are now dead code and we can
just delete them.

NB: clang reports itself as gcc 4.2 (regardless of
clang version), so clang won't be using the fallbacks
either.

Backports commit fa54abb8c298f892639ffc4bc2f61448ac3be4a1 from qemu
2018-03-02 18:59:05 -05:00

417 lines
10 KiB
C

/*
* Utility compute operations used by translated code.
*
* Copyright (c) 2007 Thiemo Seufer
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef HOST_UTILS_H
#define HOST_UTILS_H
#include "qemu/compiler.h" /* QEMU_GNUC_PREREQ */
#include "qemu/bswap.h"
#include <limits.h>
#ifdef CONFIG_INT128
static inline void mulu64(uint64_t *plow, uint64_t *phigh,
uint64_t a, uint64_t b)
{
__uint128_t r = (__uint128_t)a * b;
*plow = r;
*phigh = r >> 64;
}
static inline void muls64(uint64_t *plow, uint64_t *phigh,
int64_t a, int64_t b)
{
__int128_t r = (__int128_t)a * b;
*plow = r;
*phigh = r >> 64;
}
/* compute with 96 bit intermediate result: (a*b)/c */
static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
return (__int128_t)a * b / c;
}
static inline int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor)
{
if (divisor == 0) {
return 1;
} else {
__uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
__uint128_t result = dividend / divisor;
*plow = result;
*phigh = dividend % divisor;
return result > UINT64_MAX;
}
}
static inline int divs128(int64_t *plow, int64_t *phigh, int64_t divisor)
{
if (divisor == 0) {
return 1;
} else {
__int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
__int128_t result = dividend / divisor;
*plow = result;
*phigh = dividend % divisor;
return result != *plow;
}
}
#else
void muls64(uint64_t *phigh, uint64_t *plow, int64_t a, int64_t b);
void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b);
int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
int divs128(int64_t *plow, int64_t *phigh, int64_t divisor);
/* compute with 96 bit intermediate result: (a*b)/c */
static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
union {
uint64_t ll;
struct {
#ifdef HOST_WORDS_BIGENDIAN
uint32_t high, low;
#else
uint32_t low, high;
#endif
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = (uint32_t)(rh / c);
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
#endif
/**
* clz32 - count leading zeros in a 32-bit value.
* @val: The value to search
*
* Returns 32 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int clz32(uint32_t val)
{
return val ? __builtin_clz(val) : 32;
}
/**
* clo32 - count leading ones in a 32-bit value.
* @val: The value to search
*
* Returns 32 if the value is -1.
*/
static inline int clo32(uint32_t val)
{
return clz32(~val);
}
/**
* clz64 - count leading zeros in a 64-bit value.
* @val: The value to search
*
* Returns 64 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int clz64(uint64_t val)
{
return val ? __builtin_clzll(val) : 64;
}
/**
* clo64 - count leading ones in a 64-bit value.
* @val: The value to search
*
* Returns 64 if the value is -1.
*/
static inline int clo64(uint64_t val)
{
return clz64(~val);
}
/**
* ctz32 - count trailing zeros in a 32-bit value.
* @val: The value to search
*
* Returns 32 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int ctz32(uint32_t val)
{
return val ? __builtin_ctz(val) : 32;
}
/**
* cto32 - count trailing ones in a 32-bit value.
* @val: The value to search
*
* Returns 32 if the value is -1.
*/
static inline int cto32(uint32_t val)
{
return ctz32(~val);
}
/**
* ctz64 - count trailing zeros in a 64-bit value.
* @val: The value to search
*
* Returns 64 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int ctz64(uint64_t val)
{
return val ? __builtin_ctzll(val) : 64;
}
/**
* cto64 - count trailing ones in a 64-bit value.
* @val: The value to search
*
* Returns 64 if the value is -1.
*/
static inline int cto64(uint64_t val)
{
return ctz64(~val);
}
/**
* clrsb32 - count leading redundant sign bits in a 32-bit value.
* @val: The value to search
*
* Returns the number of bits following the sign bit that are equal to it.
* No special cases; output range is [0-31].
*/
static inline int clrsb32(uint32_t val)
{
#if QEMU_GNUC_PREREQ(4, 7)
return __builtin_clrsb(val);
#else
return clz32(val ^ ((int32_t)val >> 1)) - 1;
#endif
}
/**
* clrsb64 - count leading redundant sign bits in a 64-bit value.
* @val: The value to search
*
* Returns the number of bits following the sign bit that are equal to it.
* No special cases; output range is [0-63].
*/
static inline int clrsb64(uint64_t val)
{
#if QEMU_GNUC_PREREQ(4, 7)
return __builtin_clrsbll(val);
#else
return clz64(val ^ ((int64_t)val >> 1)) - 1;
#endif
}
/**
* ctpop8 - count the population of one bits in an 8-bit value.
* @val: The value to search
*/
static inline int ctpop8(uint8_t val)
{
return __builtin_popcount(val);
}
/**
* ctpop16 - count the population of one bits in a 16-bit value.
* @val: The value to search
*/
static inline int ctpop16(uint16_t val)
{
return __builtin_popcount(val);
}
/**
* ctpop32 - count the population of one bits in a 32-bit value.
* @val: The value to search
*/
static inline int ctpop32(uint32_t val)
{
return __builtin_popcount(val);
}
/**
* ctpop64 - count the population of one bits in a 64-bit value.
* @val: The value to search
*/
static inline int ctpop64(uint64_t val)
{
return __builtin_popcountll(val);
}
/**
* revbit8 - reverse the bits in an 8-bit value.
* @x: The value to modify.
*/
static inline uint8_t revbit8(uint8_t x)
{
/* Assign the correct nibble position. */
x = ((x & 0xf0) >> 4)
| ((x & 0x0f) << 4);
/* Assign the correct bit position. */
x = ((x & 0x88) >> 3)
| ((x & 0x44) >> 1)
| ((x & 0x22) << 1)
| ((x & 0x11) << 3);
return x;
}
/**
* revbit16 - reverse the bits in a 16-bit value.
* @x: The value to modify.
*/
static inline uint16_t revbit16(uint16_t x)
{
/* Assign the correct byte position. */
x = bswap16(x);
/* Assign the correct nibble position. */
x = ((x & 0xf0f0) >> 4)
| ((x & 0x0f0f) << 4);
/* Assign the correct bit position. */
x = ((x & 0x8888) >> 3)
| ((x & 0x4444) >> 1)
| ((x & 0x2222) << 1)
| ((x & 0x1111) << 3);
return x;
}
/**
* revbit32 - reverse the bits in a 32-bit value.
* @x: The value to modify.
*/
static inline uint32_t revbit32(uint32_t x)
{
/* Assign the correct byte position. */
x = bswap32(x);
/* Assign the correct nibble position. */
x = ((x & 0xf0f0f0f0u) >> 4)
| ((x & 0x0f0f0f0fu) << 4);
/* Assign the correct bit position. */
x = ((x & 0x88888888u) >> 3)
| ((x & 0x44444444u) >> 1)
| ((x & 0x22222222u) << 1)
| ((x & 0x11111111u) << 3);
return x;
}
/**
* revbit64 - reverse the bits in a 64-bit value.
* @x: The value to modify.
*/
static inline uint64_t revbit64(uint64_t x)
{
/* Assign the correct byte position. */
x = bswap64(x);
/* Assign the correct nibble position. */
x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
| ((x & 0x0f0f0f0f0f0f0f0full) << 4);
/* Assign the correct bit position. */
x = ((x & 0x8888888888888888ull) >> 3)
| ((x & 0x4444444444444444ull) >> 1)
| ((x & 0x2222222222222222ull) << 1)
| ((x & 0x1111111111111111ull) << 3);
return x;
}
/* Host type specific sizes of these routines. */
#if ULONG_MAX == UINT32_MAX
# define clzl clz32
# define ctzl ctz32
# define clol clo32
# define ctol cto32
# define ctpopl ctpop32
# define revbitl revbit32
#elif ULONG_MAX == UINT64_MAX
# define clzl clz64
# define ctzl ctz64
# define clol clo64
# define ctol cto64
# define ctpopl ctpop64
# define revbitl revbit64
#else
# error Unknown sizeof long
#endif
static inline bool is_power_of_2(uint64_t value)
{
if (!value) {
return false;
}
return !(value & (value - 1));
}
/**
* Return @value rounded down to the nearest power of two or zero.
*/
static inline uint64_t pow2floor(uint64_t value)
{
if (!value) {
/* Avoid undefined shift by 64 */
return 0;
}
return 0x8000000000000000ull >> clz64(value);
}
/*
* Return @value rounded up to the nearest power of two modulo 2^64.
* This is *zero* for @value > 2^63, so be careful.
*/
static inline uint64_t pow2ceil(uint64_t value)
{
int n = clz64(value - 1);
if (!n) {
/*
* @value - 1 has no leading zeroes, thus @value - 1 >= 2^63
* Therefore, either @value == 0 or @value > 2^63.
* If it's 0, return 1, else return 0.
*/
return !value;
}
return 0x8000000000000000ull >> (n - 1);
}
static inline uint32_t pow2roundup32(uint32_t x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
#endif