unicorn/qemu/tcg/tcg-op-gvec.c
Richard Henderson 57bdf0faa2
tcg: Add generic helpers for saturating arithmetic
No vector ops as yet. SSE only has direct support for 8- and 16-bit
saturation; handling 32- and 64-bit saturation is much more expensive.

Backports commit f49b12c6e6a75a5bd109bcbbda072b24e5fb8dfd from qemu
2018-03-06 16:10:09 -05:00

1859 lines
62 KiB
C

/*
* Generic vector operation expansion
*
* Copyright (c) 2018 Linaro
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "tcg.h"
#include "tcg-op.h"
#include "tcg-op-gvec.h"
#include "tcg-gvec-desc.h"
#define MAX_UNROLL 4
/* Verify vector size and alignment rules. OFS should be the OR of all
of the operand offsets so that we can check them all at once. */
static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
{
uint32_t opr_align = oprsz >= 16 ? 15 : 7;
uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
tcg_debug_assert(oprsz > 0);
tcg_debug_assert(oprsz <= maxsz);
tcg_debug_assert((oprsz & opr_align) == 0);
tcg_debug_assert((maxsz & max_align) == 0);
tcg_debug_assert((ofs & max_align) == 0);
}
/* Verify vector overlap rules for two operands. */
static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
{
tcg_debug_assert(d == a || d + s <= a || a + s <= d);
}
/* Verify vector overlap rules for three operands. */
static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
{
check_overlap_2(d, a, s);
check_overlap_2(d, b, s);
check_overlap_2(a, b, s);
}
/* Verify vector overlap rules for four operands. */
static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
uint32_t c, uint32_t s)
{
check_overlap_2(d, a, s);
check_overlap_2(d, b, s);
check_overlap_2(d, c, s);
check_overlap_2(a, b, s);
check_overlap_2(a, c, s);
check_overlap_2(b, c, s);
}
/* Create a descriptor from components. */
uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
{
uint32_t desc = 0;
assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
assert(data == sextract32(data, 0, SIMD_DATA_BITS));
oprsz = (oprsz / 8) - 1;
maxsz = (maxsz / 8) - 1;
desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
return desc;
}
/* Generate a call to a gvec-style helper with two vector operands. */
void tcg_gen_gvec_2_ool(TCGContext *s, uint32_t dofs, uint32_t aofs,
uint32_t oprsz, uint32_t maxsz, int32_t data,
gen_helper_gvec_2 *fn)
{
TCGv_ptr a0, a1;
TCGv_i32 desc = tcg_const_i32(s, simd_desc(oprsz, maxsz, data));
a0 = tcg_temp_new_ptr(s);
a1 = tcg_temp_new_ptr(s);
tcg_gen_addi_ptr(s, a0, s->cpu_env, dofs);
tcg_gen_addi_ptr(s, a1, s->cpu_env, aofs);
fn(s, a0, a1, desc);
tcg_temp_free_ptr(s, a0);
tcg_temp_free_ptr(s, a1);
tcg_temp_free_i32(s, desc);
}
/* Generate a call to a gvec-style helper with three vector operands. */
void tcg_gen_gvec_3_ool(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t oprsz, uint32_t maxsz, int32_t data,
gen_helper_gvec_3 *fn)
{
TCGv_ptr a0, a1, a2;
TCGv_i32 desc = tcg_const_i32(s, simd_desc(oprsz, maxsz, data));
a0 = tcg_temp_new_ptr(s);
a1 = tcg_temp_new_ptr(s);
a2 = tcg_temp_new_ptr(s);
tcg_gen_addi_ptr(s, a0, s->cpu_env, dofs);
tcg_gen_addi_ptr(s, a1, s->cpu_env, aofs);
tcg_gen_addi_ptr(s, a2, s->cpu_env, bofs);
fn(s, a0, a1, a2, desc);
tcg_temp_free_ptr(s, a0);
tcg_temp_free_ptr(s, a1);
tcg_temp_free_ptr(s, a2);
tcg_temp_free_i32(s, desc);
}
/* Generate a call to a gvec-style helper with four vector operands. */
void tcg_gen_gvec_4_ool(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
int32_t data, gen_helper_gvec_4 *fn)
{
TCGv_ptr a0, a1, a2, a3;
TCGv_i32 desc = tcg_const_i32(s, simd_desc(oprsz, maxsz, data));
a0 = tcg_temp_new_ptr(s);
a1 = tcg_temp_new_ptr(s);
a2 = tcg_temp_new_ptr(s);
a3 = tcg_temp_new_ptr(s);
tcg_gen_addi_ptr(s, a0, s->cpu_env, dofs);
tcg_gen_addi_ptr(s, a1, s->cpu_env, aofs);
tcg_gen_addi_ptr(s, a2, s->cpu_env, bofs);
tcg_gen_addi_ptr(s, a3, s->cpu_env, cofs);
fn(s, a0, a1, a2, a3, desc);
tcg_temp_free_ptr(s, a0);
tcg_temp_free_ptr(s, a1);
tcg_temp_free_ptr(s, a2);
tcg_temp_free_ptr(s, a3);
tcg_temp_free_i32(s, desc);
}
/* Generate a call to a gvec-style helper with five vector operands. */
void tcg_gen_gvec_5_ool(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t cofs, uint32_t xofs, uint32_t oprsz,
uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
{
TCGv_ptr a0, a1, a2, a3, a4;
TCGv_i32 desc = tcg_const_i32(s, simd_desc(oprsz, maxsz, data));
a0 = tcg_temp_new_ptr(s);
a1 = tcg_temp_new_ptr(s);
a2 = tcg_temp_new_ptr(s);
a3 = tcg_temp_new_ptr(s);
a4 = tcg_temp_new_ptr(s);
tcg_gen_addi_ptr(s, a0, s->cpu_env, dofs);
tcg_gen_addi_ptr(s, a1, s->cpu_env, aofs);
tcg_gen_addi_ptr(s, a2, s->cpu_env, bofs);
tcg_gen_addi_ptr(s, a3, s->cpu_env, cofs);
tcg_gen_addi_ptr(s, a4, s->cpu_env, xofs);
fn(s, a0, a1, a2, a3, a4, desc);
tcg_temp_free_ptr(s, a0);
tcg_temp_free_ptr(s, a1);
tcg_temp_free_ptr(s, a2);
tcg_temp_free_ptr(s, a3);
tcg_temp_free_ptr(s, a4);
tcg_temp_free_i32(s, desc);
}
/* Generate a call to a gvec-style helper with three vector operands
and an extra pointer operand. */
void tcg_gen_gvec_2_ptr(TCGContext *s, uint32_t dofs, uint32_t aofs,
TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
int32_t data, gen_helper_gvec_2_ptr *fn)
{
TCGv_ptr a0, a1;
TCGv_i32 desc = tcg_const_i32(s, simd_desc(oprsz, maxsz, data));
a0 = tcg_temp_new_ptr(s);
a1 = tcg_temp_new_ptr(s);
tcg_gen_addi_ptr(s, a0, s->cpu_env, dofs);
tcg_gen_addi_ptr(s, a1, s->cpu_env, aofs);
fn(s, a0, a1, ptr, desc);
tcg_temp_free_ptr(s, a0);
tcg_temp_free_ptr(s, a1);
tcg_temp_free_i32(s, desc);
}
/* Generate a call to a gvec-style helper with three vector operands
and an extra pointer operand. */
void tcg_gen_gvec_3_ptr(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
int32_t data, gen_helper_gvec_3_ptr *fn)
{
TCGv_ptr a0, a1, a2;
TCGv_i32 desc = tcg_const_i32(s, simd_desc(oprsz, maxsz, data));
a0 = tcg_temp_new_ptr(s);
a1 = tcg_temp_new_ptr(s);
a2 = tcg_temp_new_ptr(s);
tcg_gen_addi_ptr(s, a0, s->cpu_env, dofs);
tcg_gen_addi_ptr(s, a1, s->cpu_env, aofs);
tcg_gen_addi_ptr(s, a2, s->cpu_env, bofs);
fn(s, a0, a1, a2, ptr, desc);
tcg_temp_free_ptr(s, a0);
tcg_temp_free_ptr(s, a1);
tcg_temp_free_ptr(s, a2);
tcg_temp_free_i32(s, desc);
}
/* Generate a call to a gvec-style helper with four vector operands
and an extra pointer operand. */
void tcg_gen_gvec_4_ptr(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
uint32_t maxsz, int32_t data,
gen_helper_gvec_4_ptr *fn)
{
TCGv_ptr a0, a1, a2, a3;
TCGv_i32 desc = tcg_const_i32(s, simd_desc(oprsz, maxsz, data));
a0 = tcg_temp_new_ptr(s);
a1 = tcg_temp_new_ptr(s);
a2 = tcg_temp_new_ptr(s);
a3 = tcg_temp_new_ptr(s);
tcg_gen_addi_ptr(s, a0, s->cpu_env, dofs);
tcg_gen_addi_ptr(s, a1, s->cpu_env, aofs);
tcg_gen_addi_ptr(s, a2, s->cpu_env, bofs);
tcg_gen_addi_ptr(s, a3, s->cpu_env, cofs);
fn(s, a0, a1, a2, a3, ptr, desc);
tcg_temp_free_ptr(s, a0);
tcg_temp_free_ptr(s, a1);
tcg_temp_free_ptr(s, a2);
tcg_temp_free_ptr(s, a3);
tcg_temp_free_i32(s, desc);
}
/* Return true if we want to implement something of OPRSZ bytes
in units of LNSZ. This limits the expansion of inline code. */
static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
{
uint32_t lnct = oprsz / lnsz;
return lnct >= 1 && lnct <= MAX_UNROLL;
}
static void expand_clr(TCGContext *s, uint32_t dofs, uint32_t maxsz);
/* Duplicate C as per VECE. */
uint64_t (dup_const_impl)(unsigned vece, uint64_t c)
{
switch (vece) {
case MO_8:
return 0x0101010101010101ull * (uint8_t)c;
case MO_16:
return 0x0001000100010001ull * (uint16_t)c;
case MO_32:
return 0x0000000100000001ull * (uint32_t)c;
case MO_64:
return c;
default:
g_assert_not_reached();
}
}
/* Duplicate IN into OUT as per VECE. */
static void gen_dup_i32(TCGContext *s, unsigned vece, TCGv_i32 out, TCGv_i32 in)
{
switch (vece) {
case MO_8:
tcg_gen_ext8u_i32(s, out, in);
tcg_gen_muli_i32(s, out, out, 0x01010101);
break;
case MO_16:
tcg_gen_deposit_i32(s, out, in, in, 16, 16);
break;
case MO_32:
tcg_gen_mov_i32(s, out, in);
break;
default:
g_assert_not_reached();
}
}
static void gen_dup_i64(TCGContext *s, unsigned vece, TCGv_i64 out, TCGv_i64 in)
{
switch (vece) {
case MO_8:
tcg_gen_ext8u_i64(s, out, in);
tcg_gen_muli_i64(s, out, out, 0x0101010101010101ull);
break;
case MO_16:
tcg_gen_ext16u_i64(s, out, in);
tcg_gen_muli_i64(s, out, out, 0x0001000100010001ull);
break;
case MO_32:
tcg_gen_deposit_i64(s, out, in, in, 32, 32);
break;
case MO_64:
tcg_gen_mov_i64(s, out, in);
break;
default:
g_assert_not_reached();
}
}
/* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
* Only one of IN_32 or IN_64 may be set;
* IN_C is used if IN_32 and IN_64 are unset.
*/
static void do_dup(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t oprsz,
uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
uint64_t in_c)
{
TCGType type;
TCGv_i64 t_64;
TCGv_i32 t_32, t_desc;
TCGv_ptr t_ptr;
uint32_t i;
assert(vece <= (in_32 ? MO_32 : MO_64));
assert(in_32 == NULL || in_64 == NULL);
/* If we're storing 0, expand oprsz to maxsz. */
if (in_32 == NULL && in_64 == NULL) {
in_c = dup_const(vece, in_c);
if (in_c == 0) {
oprsz = maxsz;
}
}
type = 0;
if (TCG_TARGET_HAS_v256 && check_size_impl(oprsz, 32)) {
type = TCG_TYPE_V256;
} else if (TCG_TARGET_HAS_v128 && check_size_impl(oprsz, 16)) {
type = TCG_TYPE_V128;
} else if (TCG_TARGET_HAS_v64 && check_size_impl(oprsz, 8)
/* Prefer integer when 64-bit host and no variable dup. */
&& !(TCG_TARGET_REG_BITS == 64 && in_32 == NULL
&& (in_64 == NULL || vece == MO_64))) {
type = TCG_TYPE_V64;
}
/* Implement inline with a vector type, if possible. */
if (type != 0) {
TCGv_vec t_vec = tcg_temp_new_vec(s, type);
if (in_32) {
tcg_gen_dup_i32_vec(s, vece, t_vec, in_32);
} else if (in_64) {
tcg_gen_dup_i64_vec(s, vece, t_vec, in_64);
} else {
switch (vece) {
case MO_8:
tcg_gen_dup8i_vec(s, t_vec, in_c);
break;
case MO_16:
tcg_gen_dup16i_vec(s, t_vec, in_c);
break;
case MO_32:
tcg_gen_dup32i_vec(s, t_vec, in_c);
break;
default:
tcg_gen_dup64i_vec(s, t_vec, in_c);
break;
}
}
i = 0;
if (TCG_TARGET_HAS_v256) {
for (; i + 32 <= oprsz; i += 32) {
tcg_gen_stl_vec(s, t_vec, s->cpu_env, dofs + i, TCG_TYPE_V256);
}
}
if (TCG_TARGET_HAS_v128) {
for (; i + 16 <= oprsz; i += 16) {
tcg_gen_stl_vec(s, t_vec, s->cpu_env, dofs + i, TCG_TYPE_V128);
}
}
if (TCG_TARGET_HAS_v64) {
for (; i < oprsz; i += 8) {
tcg_gen_stl_vec(s, t_vec, s->cpu_env, dofs + i, TCG_TYPE_V64);
}
}
tcg_temp_free_vec(s, t_vec);
goto done;
}
/* Otherwise, inline with an integer type, unless "large". */
if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
t_64 = NULL;
t_32 = NULL;
if (in_32) {
/* We are given a 32-bit variable input. For a 64-bit host,
use a 64-bit operation unless the 32-bit operation would
be simple enough. */
if (TCG_TARGET_REG_BITS == 64
&& (vece != MO_32 || !check_size_impl(oprsz, 4))) {
t_64 = tcg_temp_new_i64(s);
tcg_gen_extu_i32_i64(s, t_64, in_32);
gen_dup_i64(s, vece, t_64, t_64);
} else {
t_32 = tcg_temp_new_i32(s);
gen_dup_i32(s, vece, t_32, in_32);
}
} else if (in_64) {
/* We are given a 64-bit variable input. */
t_64 = tcg_temp_new_i64(s);
gen_dup_i64(s, vece, t_64, in_64);
} else {
/* We are given a constant input. */
/* For 64-bit hosts, use 64-bit constants for "simple" constants
or when we'd need too many 32-bit stores, or when a 64-bit
constant is really required. */
if (vece == MO_64
|| (TCG_TARGET_REG_BITS == 64
&& (in_c == 0 || in_c == -1
|| !check_size_impl(oprsz, 4)))) {
t_64 = tcg_const_i64(s, in_c);
} else {
t_32 = tcg_const_i32(s, in_c);
}
}
/* Implement inline if we picked an implementation size above. */
if (t_32) {
for (i = 0; i < oprsz; i += 4) {
tcg_gen_st_i32(s, t_32, s->cpu_env, dofs + i);
}
tcg_temp_free_i32(s, t_32);
goto done;
}
if (t_64) {
for (i = 0; i < oprsz; i += 8) {
tcg_gen_st_i64(s, t_64, s->cpu_env, dofs + i);
}
tcg_temp_free_i64(s, t_64);
goto done;
}
}
/* Otherwise implement out of line. */
t_ptr = tcg_temp_new_ptr(s);
tcg_gen_addi_ptr(s, t_ptr, s->cpu_env, dofs);
t_desc = tcg_const_i32(s, simd_desc(oprsz, maxsz, 0));
if (vece == MO_64) {
if (in_64) {
gen_helper_gvec_dup64(s, t_ptr, t_desc, in_64);
} else {
t_64 = tcg_const_i64(s, in_c);
gen_helper_gvec_dup64(s, t_ptr, t_desc, t_64);
tcg_temp_free_i64(s, t_64);
}
} else {
typedef void dup_fn(TCGContext *, TCGv_ptr, TCGv_i32, TCGv_i32);
static dup_fn * const fns[3] = {
gen_helper_gvec_dup8,
gen_helper_gvec_dup16,
gen_helper_gvec_dup32
};
if (in_32) {
fns[vece](s, t_ptr, t_desc, in_32);
} else {
t_32 = tcg_temp_new_i32(s);
if (in_64) {
tcg_gen_extrl_i64_i32(s, t_32, in_64);
} else if (vece == MO_8) {
tcg_gen_movi_i32(s, t_32, in_c & 0xff);
} else if (vece == MO_16) {
tcg_gen_movi_i32(s, t_32, in_c & 0xffff);
} else {
tcg_gen_movi_i32(s, t_32, in_c);
}
fns[vece](s, t_ptr, t_desc, t_32);
tcg_temp_free_i32(s, t_32);
}
}
tcg_temp_free_ptr(s, t_ptr);
tcg_temp_free_i32(s, t_desc);
return;
done:
if (oprsz < maxsz) {
expand_clr(s, dofs + oprsz, maxsz - oprsz);
}
}
/* Likewise, but with zero. */
static void expand_clr(TCGContext *s, uint32_t dofs, uint32_t maxsz)
{
do_dup(s, MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
}
/* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
static void expand_2_i32(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t oprsz,
void (*fni)(TCGContext *, TCGv_i32, TCGv_i32))
{
TCGv_i32 t0 = tcg_temp_new_i32(s);
uint32_t i;
for (i = 0; i < oprsz; i += 4) {
tcg_gen_ld_i32(s, t0, s->cpu_env, aofs + i);
fni(s, t0, t0);
tcg_gen_st_i32(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_i32(s, t0);
}
static void expand_2i_i32(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t oprsz,
int32_t c, bool load_dest,
void (*fni)(TCGContext *, TCGv_i32, TCGv_i32, int32_t))
{
TCGv_i32 t0 = tcg_temp_new_i32(s);
TCGv_i32 t1 = tcg_temp_new_i32(s);
uint32_t i;
for (i = 0; i < oprsz; i += 4) {
tcg_gen_ld_i32(s, t0, s->cpu_env, aofs + i);
if (load_dest) {
tcg_gen_ld_i32(s, t1, s->cpu_env, dofs + i);
}
fni(s, t1, t0, c);
tcg_gen_st_i32(s, t1, s->cpu_env, dofs + i);
}
tcg_temp_free_i32(s, t0);
tcg_temp_free_i32(s, t1);
}
/* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
static void expand_3_i32(TCGContext *s, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, bool load_dest,
void (*fni)(TCGContext *, TCGv_i32, TCGv_i32, TCGv_i32))
{
TCGv_i32 t0 = tcg_temp_new_i32(s);
TCGv_i32 t1 = tcg_temp_new_i32(s);
TCGv_i32 t2 = tcg_temp_new_i32(s);
uint32_t i;
for (i = 0; i < oprsz; i += 4) {
tcg_gen_ld_i32(s, t0, s->cpu_env, aofs + i);
tcg_gen_ld_i32(s, t1, s->cpu_env, bofs + i);
if (load_dest) {
tcg_gen_ld_i32(s, t2, s->cpu_env, dofs + i);
}
fni(s, t2, t0, t1);
tcg_gen_st_i32(s, t2, s->cpu_env, dofs + i);
}
tcg_temp_free_i32(s, t2);
tcg_temp_free_i32(s, t1);
tcg_temp_free_i32(s, t0);
}
/* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
static void expand_4_i32(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t cofs, uint32_t oprsz,
void (*fni)(TCGContext *, TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
{
TCGv_i32 t0 = tcg_temp_new_i32(s);
TCGv_i32 t1 = tcg_temp_new_i32(s);
TCGv_i32 t2 = tcg_temp_new_i32(s);
TCGv_i32 t3 = tcg_temp_new_i32(s);
uint32_t i;
for (i = 0; i < oprsz; i += 4) {
tcg_gen_ld_i32(s, t1, s->cpu_env, aofs + i);
tcg_gen_ld_i32(s, t2, s->cpu_env, bofs + i);
tcg_gen_ld_i32(s, t3, s->cpu_env, cofs + i);
fni(s, t0, t1, t2, t3);
tcg_gen_st_i32(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_i32(s, t3);
tcg_temp_free_i32(s, t2);
tcg_temp_free_i32(s, t1);
tcg_temp_free_i32(s, t0);
}
/* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
static void expand_2_i64(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t oprsz,
void (*fni)(TCGContext *, TCGv_i64, TCGv_i64))
{
TCGv_i64 t0 = tcg_temp_new_i64(s);
uint32_t i;
for (i = 0; i < oprsz; i += 8) {
tcg_gen_ld_i64(s, t0, s->cpu_env, aofs + i);
fni(s, t0, t0);
tcg_gen_st_i64(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_i64(s, t0);
}
static void expand_2i_i64(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t oprsz,
int64_t c, bool load_dest,
void (*fni)(TCGContext *s, TCGv_i64, TCGv_i64, int64_t))
{
TCGv_i64 t0 = tcg_temp_new_i64(s);
TCGv_i64 t1 = tcg_temp_new_i64(s);
uint32_t i;
for (i = 0; i < oprsz; i += 8) {
tcg_gen_ld_i64(s, t0, s->cpu_env, aofs + i);
if (load_dest) {
tcg_gen_ld_i64(s, t1, s->cpu_env, dofs + i);
}
fni(s, t1, t0, c);
tcg_gen_st_i64(s, t1, s->cpu_env, dofs + i);
}
tcg_temp_free_i64(s, t0);
tcg_temp_free_i64(s, t1);
}
/* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
static void expand_3_i64(TCGContext *s, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, bool load_dest,
void (*fni)(TCGContext *, TCGv_i64, TCGv_i64, TCGv_i64))
{
TCGv_i64 t0 = tcg_temp_new_i64(s);
TCGv_i64 t1 = tcg_temp_new_i64(s);
TCGv_i64 t2 = tcg_temp_new_i64(s);
uint32_t i;
for (i = 0; i < oprsz; i += 8) {
tcg_gen_ld_i64(s, t0, s->cpu_env, aofs + i);
tcg_gen_ld_i64(s, t1, s->cpu_env, bofs + i);
if (load_dest) {
tcg_gen_ld_i64(s, t2, s->cpu_env, dofs + i);
}
fni(s, t2, t0, t1);
tcg_gen_st_i64(s, t2, s->cpu_env, dofs + i);
}
tcg_temp_free_i64(s, t2);
tcg_temp_free_i64(s, t1);
tcg_temp_free_i64(s, t0);
}
/* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
static void expand_4_i64(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t cofs, uint32_t oprsz,
void (*fni)(TCGContext *, TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
{
TCGv_i64 t0 = tcg_temp_new_i64(s);
TCGv_i64 t1 = tcg_temp_new_i64(s);
TCGv_i64 t2 = tcg_temp_new_i64(s);
TCGv_i64 t3 = tcg_temp_new_i64(s);
uint32_t i;
for (i = 0; i < oprsz; i += 8) {
tcg_gen_ld_i64(s, t1, s->cpu_env, aofs + i);
tcg_gen_ld_i64(s, t2, s->cpu_env, bofs + i);
tcg_gen_ld_i64(s, t3, s->cpu_env, cofs + i);
fni(s, t0, t1, t2, t3);
tcg_gen_st_i64(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_i64(s, t3);
tcg_temp_free_i64(s, t2);
tcg_temp_free_i64(s, t1);
tcg_temp_free_i64(s, t0);
}
/* Expand OPSZ bytes worth of two-operand operations using host vectors. */
static void expand_2_vec(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t oprsz, uint32_t tysz, TCGType type,
void (*fni)(TCGContext *, unsigned, TCGv_vec, TCGv_vec))
{
TCGv_vec t0 = tcg_temp_new_vec(s, type);
uint32_t i;
for (i = 0; i < oprsz; i += tysz) {
tcg_gen_ld_vec(s, t0, s->cpu_env, aofs + i);
fni(s, vece, t0, t0);
tcg_gen_st_vec(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_vec(s, t0);
}
/* Expand OPSZ bytes worth of two-vector operands and an immediate operand
using host vectors. */
static void expand_2i_vec(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t oprsz, uint32_t tysz, TCGType type,
int64_t c, bool load_dest,
void (*fni)(TCGContext *s, unsigned, TCGv_vec, TCGv_vec, int64_t))
{
TCGv_vec t0 = tcg_temp_new_vec(s, type);
TCGv_vec t1 = tcg_temp_new_vec(s, type);
uint32_t i;
for (i = 0; i < oprsz; i += tysz) {
tcg_gen_ld_vec(s, t0, s->cpu_env, aofs + i);
if (load_dest) {
tcg_gen_ld_vec(s, t1, s->cpu_env, dofs + i);
}
fni(s, vece, t1, t0, c);
tcg_gen_st_vec(s, t1, s->cpu_env, dofs + i);
}
tcg_temp_free_vec(s, t0);
tcg_temp_free_vec(s, t1);
}
/* Expand OPSZ bytes worth of three-operand operations using host vectors. */
static void expand_3_vec(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz,
uint32_t tysz, TCGType type, bool load_dest,
void (*fni)(TCGContext *, unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
{
TCGv_vec t0 = tcg_temp_new_vec(s, type);
TCGv_vec t1 = tcg_temp_new_vec(s, type);
TCGv_vec t2 = tcg_temp_new_vec(s, type);
uint32_t i;
for (i = 0; i < oprsz; i += tysz) {
tcg_gen_ld_vec(s, t0, s->cpu_env, aofs + i);
tcg_gen_ld_vec(s, t1, s->cpu_env, bofs + i);
if (load_dest) {
tcg_gen_ld_vec(s, t2, s->cpu_env, dofs + i);
}
fni(s, vece, t2, t0, t1);
tcg_gen_st_vec(s, t2, s->cpu_env, dofs + i);
}
tcg_temp_free_vec(s, t2);
tcg_temp_free_vec(s, t1);
tcg_temp_free_vec(s, t0);
}
/* Expand OPSZ bytes worth of four-operand operations using host vectors. */
static void expand_4_vec(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t cofs, uint32_t oprsz,
uint32_t tysz, TCGType type,
void (*fni)(TCGContext *, unsigned, TCGv_vec, TCGv_vec,
TCGv_vec, TCGv_vec))
{
TCGv_vec t0 = tcg_temp_new_vec(s, type);
TCGv_vec t1 = tcg_temp_new_vec(s, type);
TCGv_vec t2 = tcg_temp_new_vec(s, type);
TCGv_vec t3 = tcg_temp_new_vec(s, type);
uint32_t i;
for (i = 0; i < oprsz; i += tysz) {
tcg_gen_ld_vec(s, t1, s->cpu_env, aofs + i);
tcg_gen_ld_vec(s, t2, s->cpu_env, bofs + i);
tcg_gen_ld_vec(s, t3, s->cpu_env, cofs + i);
fni(s, vece, t0, t1, t2, t3);
tcg_gen_st_vec(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_vec(s, t3);
tcg_temp_free_vec(s, t2);
tcg_temp_free_vec(s, t1);
tcg_temp_free_vec(s, t0);
}
/* Expand a vector two-operand operation. */
void tcg_gen_gvec_2(TCGContext *s, uint32_t dofs, uint32_t aofs,
uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
{
check_size_align(oprsz, maxsz, dofs | aofs);
check_overlap_2(dofs, aofs, maxsz);
/* Recall that ARM SVE allows vector sizes that are not a power of 2.
Expand with successively smaller host vector sizes. The intent is
that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
/* ??? For maxsz > oprsz, the host may be able to use an opr-sized
operation, zeroing the balance of the register. We can then
use a max-sized store to implement the clearing without an extra
store operation. This is true for aarch64 and x86_64 hosts. */
if (TCG_TARGET_HAS_v256 && g->fniv && check_size_impl(oprsz, 32)
&& (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V256, g->vece))) {
uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
expand_2_vec(s, g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, g->fniv);
if (some == oprsz) {
goto done;
}
dofs += some;
aofs += some;
oprsz -= some;
maxsz -= some;
}
if (TCG_TARGET_HAS_v128 && g->fniv && check_size_impl(oprsz, 16)
&& (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V128, g->vece))) {
expand_2_vec(s, g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, g->fniv);
} else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
&& g->fniv && check_size_impl(oprsz, 8)
&& (!g->opc
|| tcg_can_emit_vec_op(g->opc, TCG_TYPE_V64, g->vece))) {
expand_2_vec(s, g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, g->fniv);
} else if (g->fni8 && check_size_impl(oprsz, 8)) {
expand_2_i64(s, dofs, aofs, oprsz, g->fni8);
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
expand_2_i32(s, dofs, aofs, oprsz, g->fni4);
} else {
assert(g->fno != NULL);
tcg_gen_gvec_2_ool(s, dofs, aofs, oprsz, maxsz, g->data, g->fno);
return;
}
done:
if (oprsz < maxsz) {
expand_clr(s, dofs + oprsz, maxsz - oprsz);
}
}
void tcg_gen_gvec_2i(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t oprsz,
uint32_t maxsz, int64_t c, const GVecGen2i *g)
{
check_size_align(oprsz, maxsz, dofs | aofs);
check_overlap_2(dofs, aofs, maxsz);
/* Recall that ARM SVE allows vector sizes that are not a power of 2.
Expand with successively smaller host vector sizes. The intent is
that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
if (TCG_TARGET_HAS_v256 && g->fniv && check_size_impl(oprsz, 32)
&& (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V256, g->vece))) {
uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
expand_2i_vec(s, g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
c, g->load_dest, g->fniv);
if (some == oprsz) {
goto done;
}
dofs += some;
aofs += some;
oprsz -= some;
maxsz -= some;
}
if (TCG_TARGET_HAS_v128 && g->fniv && check_size_impl(oprsz, 16)
&& (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V128, g->vece))) {
expand_2i_vec(s, g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
c, g->load_dest, g->fniv);
} else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
&& g->fniv && check_size_impl(oprsz, 8)
&& (!g->opc
|| tcg_can_emit_vec_op(g->opc, TCG_TYPE_V64, g->vece))) {
expand_2i_vec(s, g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
c, g->load_dest, g->fniv);
} else if (g->fni8 && check_size_impl(oprsz, 8)) {
expand_2i_i64(s, dofs, aofs, oprsz, c, g->load_dest, g->fni8);
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
expand_2i_i32(s, dofs, aofs, oprsz, c, g->load_dest, g->fni4);
} else {
tcg_gen_gvec_2_ool(s, dofs, aofs, oprsz, maxsz, c, g->fno);
return;
}
done:
if (oprsz < maxsz) {
expand_clr(s, dofs + oprsz, maxsz - oprsz);
}
}
/* Expand a vector three-operand operation. */
void tcg_gen_gvec_3(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
{
check_size_align(oprsz, maxsz, dofs | aofs | bofs);
check_overlap_3(dofs, aofs, bofs, maxsz);
/* Recall that ARM SVE allows vector sizes that are not a power of 2.
Expand with successively smaller host vector sizes. The intent is
that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
if (TCG_TARGET_HAS_v256 && g->fniv && check_size_impl(oprsz, 32)
&& (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V256, g->vece))) {
uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
expand_3_vec(s, g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
g->load_dest, g->fniv);
if (some == oprsz) {
goto done;
}
dofs += some;
aofs += some;
bofs += some;
oprsz -= some;
maxsz -= some;
}
if (TCG_TARGET_HAS_v128 && g->fniv && check_size_impl(oprsz, 16)
&& (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V128, g->vece))) {
expand_3_vec(s, g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
g->load_dest, g->fniv);
} else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
&& g->fniv && check_size_impl(oprsz, 8)
&& (!g->opc
|| tcg_can_emit_vec_op(g->opc, TCG_TYPE_V64, g->vece))) {
expand_3_vec(s, g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
g->load_dest, g->fniv);
} else if (g->fni8 && check_size_impl(oprsz, 8)) {
expand_3_i64(s, dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
expand_3_i32(s, dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
} else {
assert(g->fno != NULL);
tcg_gen_gvec_3_ool(s, dofs, aofs, bofs, oprsz, maxsz, g->data, g->fno);
}
done:
if (oprsz < maxsz) {
expand_clr(s, dofs + oprsz, maxsz - oprsz);
}
}
/* Expand a vector four-operand operation. */
void tcg_gen_gvec_4(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
{
check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
/* Recall that ARM SVE allows vector sizes that are not a power of 2.
Expand with successively smaller host vector sizes. The intent is
that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
if (TCG_TARGET_HAS_v256 && g->fniv && check_size_impl(oprsz, 32)
&& (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V256, g->vece))) {
uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
expand_4_vec(s, g->vece, dofs, aofs, bofs, cofs, some,
32, TCG_TYPE_V256, g->fniv);
if (some == oprsz) {
goto done;
}
dofs += some;
aofs += some;
bofs += some;
cofs += some;
oprsz -= some;
maxsz -= some;
}
if (TCG_TARGET_HAS_v128 && g->fniv && check_size_impl(oprsz, 16)
&& (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V128, g->vece))) {
expand_4_vec(s, g->vece, dofs, aofs, bofs, cofs, oprsz,
16, TCG_TYPE_V128, g->fniv);
} else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
&& g->fniv && check_size_impl(oprsz, 8)
&& (!g->opc
|| tcg_can_emit_vec_op(g->opc, TCG_TYPE_V64, g->vece))) {
expand_4_vec(s, g->vece, dofs, aofs, bofs, cofs, oprsz,
8, TCG_TYPE_V64, g->fniv);
} else if (g->fni8 && check_size_impl(oprsz, 8)) {
expand_4_i64(s, dofs, aofs, bofs, cofs, oprsz, g->fni8);
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
expand_4_i32(s, dofs, aofs, bofs, cofs, oprsz, g->fni4);
} else {
assert(g->fno != NULL);
tcg_gen_gvec_4_ool(s, dofs, aofs, bofs, cofs,
oprsz, maxsz, g->data, g->fno);
return;
}
done:
if (oprsz < maxsz) {
expand_clr(s, dofs + oprsz, maxsz - oprsz);
}
}
/*
* Expand specific vector operations.
*/
static void vec_mov2(TCGContext *s, unsigned vece, TCGv_vec a, TCGv_vec b)
{
tcg_gen_mov_vec(s, a, b);
}
void tcg_gen_gvec_mov(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen2 g = {
.fni8 = tcg_gen_mov_i64,
.fniv = vec_mov2,
.fno = gen_helper_gvec_mov,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (dofs != aofs) {
tcg_gen_gvec_2(s, dofs, aofs, oprsz, maxsz, &g);
} else {
check_size_align(oprsz, maxsz, dofs);
if (oprsz < maxsz) {
expand_clr(s, dofs + oprsz, maxsz - oprsz);
}
}
}
void tcg_gen_gvec_dup_i32(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t oprsz,
uint32_t maxsz, TCGv_i32 in)
{
check_size_align(oprsz, maxsz, dofs);
tcg_debug_assert(vece <= MO_32);
do_dup(s, vece, dofs, oprsz, maxsz, in, NULL, 0);
}
void tcg_gen_gvec_dup_i64(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t oprsz,
uint32_t maxsz, TCGv_i64 in)
{
check_size_align(oprsz, maxsz, dofs);
tcg_debug_assert(vece <= MO_64);
do_dup(s, vece, dofs, oprsz, maxsz, NULL, in, 0);
}
void tcg_gen_gvec_dup_mem(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t oprsz, uint32_t maxsz)
{
if (vece <= MO_32) {
TCGv_i32 in = tcg_temp_new_i32(s);
switch (vece) {
case MO_8:
tcg_gen_ld8u_i32(s, in, s->cpu_env, aofs);
break;
case MO_16:
tcg_gen_ld16u_i32(s, in, s->cpu_env, aofs);
break;
case MO_32:
tcg_gen_ld_i32(s, in, s->cpu_env, aofs);
break;
}
tcg_gen_gvec_dup_i32(s, vece, dofs, oprsz, maxsz, in);
tcg_temp_free_i32(s, in);
} else if (vece == MO_64) {
TCGv_i64 in = tcg_temp_new_i64(s);
tcg_gen_ld_i64(s, in, s->cpu_env, aofs);
tcg_gen_gvec_dup_i64(s, MO_64, dofs, oprsz, maxsz, in);
tcg_temp_free_i64(s, in);
} else {
/* 128-bit duplicate. */
/* ??? Dup to 256-bit vector. */
int i;
tcg_debug_assert(vece == 4);
tcg_debug_assert(oprsz >= 16);
if (TCG_TARGET_HAS_v128) {
TCGv_vec in = tcg_temp_new_vec(s, TCG_TYPE_V128);
tcg_gen_ld_vec(s, in, s->cpu_env, aofs);
for (i = 0; i < oprsz; i += 16) {
tcg_gen_st_vec(s, in, s->cpu_env, dofs + i);
}
tcg_temp_free_vec(s, in);
} else {
TCGv_i64 in0 = tcg_temp_new_i64(s);
TCGv_i64 in1 = tcg_temp_new_i64(s);
tcg_gen_ld_i64(s, in0, s->cpu_env, aofs);
tcg_gen_ld_i64(s, in1, s->cpu_env, aofs + 8);
for (i = 0; i < oprsz; i += 16) {
tcg_gen_st_i64(s, in0, s->cpu_env, dofs + i);
tcg_gen_st_i64(s, in1, s->cpu_env, dofs + i + 8);
}
tcg_temp_free_i64(s, in0);
tcg_temp_free_i64(s, in1);
}
}
}
void tcg_gen_gvec_dup64i(TCGContext *s, uint32_t dofs, uint32_t oprsz,
uint32_t maxsz, uint64_t x)
{
check_size_align(oprsz, maxsz, dofs);
do_dup(s, MO_64, dofs, oprsz, maxsz, NULL, NULL, x);
}
void tcg_gen_gvec_dup32i(TCGContext *s, uint32_t dofs, uint32_t oprsz,
uint32_t maxsz, uint32_t x)
{
check_size_align(oprsz, maxsz, dofs);
do_dup(s, MO_32, dofs, oprsz, maxsz, NULL, NULL, x);
}
void tcg_gen_gvec_dup16i(TCGContext *s, uint32_t dofs, uint32_t oprsz,
uint32_t maxsz, uint16_t x)
{
check_size_align(oprsz, maxsz, dofs);
do_dup(s, MO_16, dofs, oprsz, maxsz, NULL, NULL, x);
}
void tcg_gen_gvec_dup8i(TCGContext *s, uint32_t dofs, uint32_t oprsz,
uint32_t maxsz, uint8_t x)
{
check_size_align(oprsz, maxsz, dofs);
do_dup(s, MO_8, dofs, oprsz, maxsz, NULL, NULL, x);
}
void tcg_gen_gvec_not(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen2 g = {
.fni8 = tcg_gen_not_i64,
.fniv = tcg_gen_not_vec,
.fno = gen_helper_gvec_not,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
tcg_gen_gvec_2(s, dofs, aofs, oprsz, maxsz, &g);
}
/* Perform a vector addition using normal addition and a mask. The mask
should be the sign bit of each lane. This 6-operation form is more
efficient than separate additions when there are 4 or more lanes in
the 64-bit operation. */
static void gen_addv_mask(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
{
TCGv_i64 t1 = tcg_temp_new_i64(s);
TCGv_i64 t2 = tcg_temp_new_i64(s);
TCGv_i64 t3 = tcg_temp_new_i64(s);
tcg_gen_andc_i64(s, t1, a, m);
tcg_gen_andc_i64(s, t2, b, m);
tcg_gen_xor_i64(s, t3, a, b);
tcg_gen_add_i64(s, d, t1, t2);
tcg_gen_and_i64(s, t3, t3, m);
tcg_gen_xor_i64(s, d, d, t3);
tcg_temp_free_i64(s, t1);
tcg_temp_free_i64(s, t2);
tcg_temp_free_i64(s, t3);
}
void tcg_gen_vec_add8_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 m = tcg_const_i64(s, dup_const(MO_8, 0x80));
gen_addv_mask(s, d, a, b, m);
tcg_temp_free_i64(s, m);
}
void tcg_gen_vec_add16_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 m = tcg_const_i64(s, dup_const(MO_16, 0x8000));
gen_addv_mask(s, d, a, b, m);
tcg_temp_free_i64(s, m);
}
void tcg_gen_vec_add32_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 t1 = tcg_temp_new_i64(s);
TCGv_i64 t2 = tcg_temp_new_i64(s);
tcg_gen_andi_i64(s, t1, a, ~0xffffffffull);
tcg_gen_add_i64(s, t2, a, b);
tcg_gen_add_i64(s, t1, t1, b);
tcg_gen_deposit_i64(s, d, t1, t2, 0, 32);
tcg_temp_free_i64(s, t1);
tcg_temp_free_i64(s, t2);
}
void tcg_gen_gvec_add(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g[4] = {
{ .fni8 = tcg_gen_vec_add8_i64,
.fniv = tcg_gen_add_vec,
.fno = gen_helper_gvec_add8,
.opc = INDEX_op_add_vec,
.vece = MO_8 },
{ .fni8 = tcg_gen_vec_add16_i64,
.fniv = tcg_gen_add_vec,
.fno = gen_helper_gvec_add16,
.opc = INDEX_op_add_vec,
.vece = MO_16 },
{ .fni4 = tcg_gen_add_i32,
.fniv = tcg_gen_add_vec,
.fno = gen_helper_gvec_add32,
.opc = INDEX_op_add_vec,
.vece = MO_32 },
{ .fni8 = tcg_gen_add_i64,
.fniv = tcg_gen_add_vec,
.fno = gen_helper_gvec_add64,
.opc = INDEX_op_add_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
}
/* Perform a vector subtraction using normal subtraction and a mask.
Compare gen_addv_mask above. */
static void gen_subv_mask(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
{
TCGv_i64 t1 = tcg_temp_new_i64(s);
TCGv_i64 t2 = tcg_temp_new_i64(s);
TCGv_i64 t3 = tcg_temp_new_i64(s);
tcg_gen_or_i64(s, t1, a, m);
tcg_gen_andc_i64(s, t2, b, m);
tcg_gen_eqv_i64(s, t3, a, b);
tcg_gen_sub_i64(s, d, t1, t2);
tcg_gen_and_i64(s, t3, t3, m);
tcg_gen_xor_i64(s, d, d, t3);
tcg_temp_free_i64(s, t1);
tcg_temp_free_i64(s, t2);
tcg_temp_free_i64(s, t3);
}
void tcg_gen_vec_sub8_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 m = tcg_const_i64(s, dup_const(MO_8, 0x80));
gen_subv_mask(s, d, a, b, m);
tcg_temp_free_i64(s, m);
}
void tcg_gen_vec_sub16_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 m = tcg_const_i64(s, dup_const(MO_16, 0x8000));
gen_subv_mask(s, d, a, b, m);
tcg_temp_free_i64(s, m);
}
void tcg_gen_vec_sub32_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 t1 = tcg_temp_new_i64(s);
TCGv_i64 t2 = tcg_temp_new_i64(s);
tcg_gen_andi_i64(s, t1, b, ~0xffffffffull);
tcg_gen_sub_i64(s, t2, a, b);
tcg_gen_sub_i64(s, t1, a, t1);
tcg_gen_deposit_i64(s, d, t1, t2, 0, 32);
tcg_temp_free_i64(s, t1);
tcg_temp_free_i64(s, t2);
}
void tcg_gen_gvec_sub(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g[4] = {
{ .fni8 = tcg_gen_vec_sub8_i64,
.fniv = tcg_gen_sub_vec,
.fno = gen_helper_gvec_sub8,
.opc = INDEX_op_sub_vec,
.vece = MO_8 },
{ .fni8 = tcg_gen_vec_sub16_i64,
.fniv = tcg_gen_sub_vec,
.fno = gen_helper_gvec_sub16,
.opc = INDEX_op_sub_vec,
.vece = MO_16 },
{ .fni4 = tcg_gen_sub_i32,
.fniv = tcg_gen_sub_vec,
.fno = gen_helper_gvec_sub32,
.opc = INDEX_op_sub_vec,
.vece = MO_32 },
{ .fni8 = tcg_gen_sub_i64,
.fniv = tcg_gen_sub_vec,
.fno = gen_helper_gvec_sub64,
.opc = INDEX_op_sub_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
}
void tcg_gen_gvec_mul(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g[4] = {
{ .fniv = tcg_gen_mul_vec,
.fno = gen_helper_gvec_mul8,
.opc = INDEX_op_mul_vec,
.vece = MO_8 },
{ .fniv = tcg_gen_mul_vec,
.fno = gen_helper_gvec_mul16,
.opc = INDEX_op_mul_vec,
.vece = MO_16 },
{ .fni4 = tcg_gen_mul_i32,
.fniv = tcg_gen_mul_vec,
.fno = gen_helper_gvec_mul32,
.opc = INDEX_op_mul_vec,
.vece = MO_32 },
{ .fni8 = tcg_gen_mul_i64,
.fniv = tcg_gen_mul_vec,
.fno = gen_helper_gvec_mul64,
.opc = INDEX_op_mul_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
}
void tcg_gen_gvec_ssadd(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g[4] = {
{ .fno = gen_helper_gvec_ssadd8, .vece = MO_8 },
{ .fno = gen_helper_gvec_ssadd16, .vece = MO_16 },
{ .fno = gen_helper_gvec_ssadd32, .vece = MO_32 },
{ .fno = gen_helper_gvec_ssadd64, .vece = MO_64 }
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
}
void tcg_gen_gvec_sssub(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g[4] = {
{ .fno = gen_helper_gvec_sssub8, .vece = MO_8 },
{ .fno = gen_helper_gvec_sssub16, .vece = MO_16 },
{ .fno = gen_helper_gvec_sssub32, .vece = MO_32 },
{ .fno = gen_helper_gvec_sssub64, .vece = MO_64 }
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
}
static void tcg_gen_vec_usadd32_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
TCGv_i32 max = tcg_const_i32(s, -1);
tcg_gen_add_i32(s, d, a, b);
tcg_gen_movcond_i32(s, TCG_COND_LTU, d, d, a, max, d);
tcg_temp_free_i32(s, max);
}
static void tcg_gen_vec_usadd32_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 max = tcg_const_i64(s, -1);
tcg_gen_add_i64(s, d, a, b);
tcg_gen_movcond_i64(s, TCG_COND_LTU, d, d, a, max, d);
tcg_temp_free_i64(s, max);
}
void tcg_gen_gvec_usadd(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g[4] = {
{ .fno = gen_helper_gvec_usadd8, .vece = MO_8 },
{ .fno = gen_helper_gvec_usadd16, .vece = MO_16 },
{ .fni4 = tcg_gen_vec_usadd32_i32,
.fno = gen_helper_gvec_usadd32,
.vece = MO_32 },
{ .fni8 = tcg_gen_vec_usadd32_i64,
.fno = gen_helper_gvec_usadd64,
.vece = MO_64 }
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
}
static void tcg_gen_vec_ussub32_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
TCGv_i32 min = tcg_const_i32(s, 0);
tcg_gen_sub_i32(s, d, a, b);
tcg_gen_movcond_i32(s, TCG_COND_LTU, d, a, b, min, d);
tcg_temp_free_i32(s, min);
}
static void tcg_gen_vec_ussub32_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 min = tcg_const_i64(s, 0);
tcg_gen_sub_i64(s, d, a, b);
tcg_gen_movcond_i64(s, TCG_COND_LTU, d, a, b, min, d);
tcg_temp_free_i64(s, min);
}
void tcg_gen_gvec_ussub(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g[4] = {
{ .fno = gen_helper_gvec_ussub8, .vece = MO_8 },
{ .fno = gen_helper_gvec_ussub16, .vece = MO_16 },
{ .fni4 = tcg_gen_vec_ussub32_i32,
.fno = gen_helper_gvec_ussub32,
.vece = MO_32 },
{ .fni8 = tcg_gen_vec_ussub32_i64,
.fno = gen_helper_gvec_ussub64,
.vece = MO_64 }
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
}
/* Perform a vector negation using normal negation and a mask.
Compare gen_subv_mask above. */
static void gen_negv_mask(TCGContext *s, TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
{
TCGv_i64 t2 = tcg_temp_new_i64(s);
TCGv_i64 t3 = tcg_temp_new_i64(s);
tcg_gen_andc_i64(s, t3, m, b);
tcg_gen_andc_i64(s, t2, b, m);
tcg_gen_sub_i64(s, d, m, t2);
tcg_gen_xor_i64(s, d, d, t3);
tcg_temp_free_i64(s, t2);
tcg_temp_free_i64(s, t3);
}
void tcg_gen_vec_neg8_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 b)
{
TCGv_i64 m = tcg_const_i64(s, dup_const(MO_8, 0x80));
gen_negv_mask(s, d, b, m);
tcg_temp_free_i64(s, m);
}
void tcg_gen_vec_neg16_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 b)
{
TCGv_i64 m = tcg_const_i64(s, dup_const(MO_16, 0x8000));
gen_negv_mask(s, d, b, m);
tcg_temp_free_i64(s, m);
}
void tcg_gen_vec_neg32_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 b)
{
TCGv_i64 t1 = tcg_temp_new_i64(s);
TCGv_i64 t2 = tcg_temp_new_i64(s);
tcg_gen_andi_i64(s, t1, b, ~0xffffffffull);
tcg_gen_neg_i64(s, t2, b);
tcg_gen_neg_i64(s, t1, t1);
tcg_gen_deposit_i64(s, d, t1, t2, 0, 32);
tcg_temp_free_i64(s, t1);
tcg_temp_free_i64(s, t2);
}
void tcg_gen_gvec_neg(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen2 g[4] = {
{ .fni8 = tcg_gen_vec_neg8_i64,
.fniv = tcg_gen_neg_vec,
.fno = gen_helper_gvec_neg8,
.opc = INDEX_op_neg_vec,
.vece = MO_8 },
{ .fni8 = tcg_gen_vec_neg16_i64,
.fniv = tcg_gen_neg_vec,
.fno = gen_helper_gvec_neg16,
.opc = INDEX_op_neg_vec,
.vece = MO_16 },
{ .fni4 = tcg_gen_neg_i32,
.fniv = tcg_gen_neg_vec,
.fno = gen_helper_gvec_neg32,
.opc = INDEX_op_neg_vec,
.vece = MO_32 },
{ .fni8 = tcg_gen_neg_i64,
.fniv = tcg_gen_neg_vec,
.fno = gen_helper_gvec_neg64,
.opc = INDEX_op_neg_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_2(s, dofs, aofs, oprsz, maxsz, &g[vece]);
}
void tcg_gen_gvec_and(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g = {
.fni8 = tcg_gen_and_i64,
.fniv = tcg_gen_and_vec,
.fno = gen_helper_gvec_and,
.opc = INDEX_op_and_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g);
}
void tcg_gen_gvec_or(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g = {
.fni8 = tcg_gen_or_i64,
.fniv = tcg_gen_or_vec,
.fno = gen_helper_gvec_or,
.opc = INDEX_op_or_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g);
}
void tcg_gen_gvec_xor(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g = {
.fni8 = tcg_gen_xor_i64,
.fniv = tcg_gen_xor_vec,
.fno = gen_helper_gvec_xor,
.opc = INDEX_op_xor_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g);
}
void tcg_gen_gvec_andc(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g = {
.fni8 = tcg_gen_andc_i64,
.fniv = tcg_gen_andc_vec,
.fno = gen_helper_gvec_andc,
.opc = INDEX_op_andc_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g);
}
void tcg_gen_gvec_orc(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen3 g = {
.fni8 = tcg_gen_orc_i64,
.fniv = tcg_gen_orc_vec,
.fno = gen_helper_gvec_orc,
.opc = INDEX_op_orc_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
tcg_gen_gvec_3(s, dofs, aofs, bofs, oprsz, maxsz, &g);
}
void tcg_gen_vec_shl8i_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t c)
{
uint64_t mask = dup_const(MO_8, 0xff << c);
tcg_gen_shli_i64(s, d, a, c);
tcg_gen_andi_i64(s, d, d, mask);
}
void tcg_gen_vec_shl16i_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t c)
{
uint64_t mask = dup_const(MO_16, 0xffff << c);
tcg_gen_shli_i64(s, d, a, c);
tcg_gen_andi_i64(s, d, d, mask);
}
void tcg_gen_gvec_shli(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
int64_t shift, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen2i g[4] = {
{ .fni8 = tcg_gen_vec_shl8i_i64,
.fniv = tcg_gen_shli_vec,
.fno = gen_helper_gvec_shl8i,
.opc = INDEX_op_shli_vec,
.vece = MO_8 },
{ .fni8 = tcg_gen_vec_shl16i_i64,
.fniv = tcg_gen_shli_vec,
.fno = gen_helper_gvec_shl16i,
.opc = INDEX_op_shli_vec,
.vece = MO_16 },
{ .fni4 = tcg_gen_shli_i32,
.fniv = tcg_gen_shli_vec,
.fno = gen_helper_gvec_shl32i,
.opc = INDEX_op_shli_vec,
.vece = MO_32 },
{ .fni8 = tcg_gen_shli_i64,
.fniv = tcg_gen_shli_vec,
.fno = gen_helper_gvec_shl64i,
.opc = INDEX_op_shli_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_debug_assert(shift >= 0 && shift < (8 << vece));
if (shift == 0) {
tcg_gen_gvec_mov(s, vece, dofs, aofs, oprsz, maxsz);
} else {
tcg_gen_gvec_2i(s, dofs, aofs, oprsz, maxsz, shift, &g[vece]);
}
}
void tcg_gen_vec_shr8i_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t c)
{
uint64_t mask = dup_const(MO_8, 0xff >> c);
tcg_gen_shri_i64(s, d, a, c);
tcg_gen_andi_i64(s, d, d, mask);
}
void tcg_gen_vec_shr16i_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t c)
{
uint64_t mask = dup_const(MO_16, 0xffff >> c);
tcg_gen_shri_i64(s, d, a, c);
tcg_gen_andi_i64(s, d, d, mask);
}
void tcg_gen_gvec_shri(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
int64_t shift, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen2i g[4] = {
{ .fni8 = tcg_gen_vec_shr8i_i64,
.fniv = tcg_gen_shri_vec,
.fno = gen_helper_gvec_shr8i,
.opc = INDEX_op_shri_vec,
.vece = MO_8 },
{ .fni8 = tcg_gen_vec_shr16i_i64,
.fniv = tcg_gen_shri_vec,
.fno = gen_helper_gvec_shr16i,
.opc = INDEX_op_shri_vec,
.vece = MO_16 },
{ .fni4 = tcg_gen_shri_i32,
.fniv = tcg_gen_shri_vec,
.fno = gen_helper_gvec_shr32i,
.opc = INDEX_op_shri_vec,
.vece = MO_32 },
{ .fni8 = tcg_gen_shri_i64,
.fniv = tcg_gen_shri_vec,
.fno = gen_helper_gvec_shr64i,
.opc = INDEX_op_shri_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_debug_assert(shift >= 0 && shift < (8 << vece));
if (shift == 0) {
tcg_gen_gvec_mov(s, vece, dofs, aofs, oprsz, maxsz);
} else {
tcg_gen_gvec_2i(s, dofs, aofs, oprsz, maxsz, shift, &g[vece]);
}
}
void tcg_gen_vec_sar8i_i64(TCGContext *ctx, TCGv_i64 d, TCGv_i64 a, int64_t c)
{
uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
uint64_t c_mask = dup_const(MO_8, 0xff >> c);
TCGv_i64 s = tcg_temp_new_i64(ctx);
tcg_gen_shri_i64(ctx, d, a, c);
tcg_gen_andi_i64(ctx, s, d, s_mask); /* isolate (shifted) sign bit */
tcg_gen_muli_i64(ctx, s, s, (2 << c) - 2); /* replicate isolated signs */
tcg_gen_andi_i64(ctx, d, d, c_mask); /* clear out bits above sign */
tcg_gen_or_i64(ctx, d, d, s); /* include sign extension */
tcg_temp_free_i64(ctx, s);
}
void tcg_gen_vec_sar16i_i64(TCGContext *ctx, TCGv_i64 d, TCGv_i64 a, int64_t c)
{
uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
TCGv_i64 s = tcg_temp_new_i64(ctx);
tcg_gen_shri_i64(ctx, d, a, c);
tcg_gen_andi_i64(ctx, s, d, s_mask); /* isolate (shifted) sign bit */
tcg_gen_andi_i64(ctx, d, d, c_mask); /* clear out bits above sign */
tcg_gen_muli_i64(ctx, s, s, (2 << c) - 2); /* replicate isolated signs */
tcg_gen_or_i64(ctx, d, d, s); /* include sign extension */
tcg_temp_free_i64(ctx, s);
}
void tcg_gen_gvec_sari(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
int64_t shift, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen2i g[4] = {
{ .fni8 = tcg_gen_vec_sar8i_i64,
.fniv = tcg_gen_sari_vec,
.fno = gen_helper_gvec_sar8i,
.opc = INDEX_op_sari_vec,
.vece = MO_8 },
{ .fni8 = tcg_gen_vec_sar16i_i64,
.fniv = tcg_gen_sari_vec,
.fno = gen_helper_gvec_sar16i,
.opc = INDEX_op_sari_vec,
.vece = MO_16 },
{ .fni4 = tcg_gen_sari_i32,
.fniv = tcg_gen_sari_vec,
.fno = gen_helper_gvec_sar32i,
.opc = INDEX_op_sari_vec,
.vece = MO_32 },
{ .fni8 = tcg_gen_sari_i64,
.fniv = tcg_gen_sari_vec,
.fno = gen_helper_gvec_sar64i,
.opc = INDEX_op_sari_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_debug_assert(shift >= 0 && shift < (8 << vece));
if (shift == 0) {
tcg_gen_gvec_mov(s, vece, dofs, aofs, oprsz, maxsz);
} else {
tcg_gen_gvec_2i(s, dofs, aofs, oprsz, maxsz, shift, &g[vece]);
}
}
/* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
static void expand_cmp_i32(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t oprsz, TCGCond cond)
{
TCGv_i32 t0 = tcg_temp_new_i32(s);
TCGv_i32 t1 = tcg_temp_new_i32(s);
uint32_t i;
for (i = 0; i < oprsz; i += 4) {
tcg_gen_ld_i32(s, t0, s->cpu_env, aofs + i);
tcg_gen_ld_i32(s, t1, s->cpu_env, bofs + i);
tcg_gen_setcond_i32(s, cond, t0, t0, t1);
tcg_gen_neg_i32(s, t0, t0);
tcg_gen_st_i32(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_i32(s, t1);
tcg_temp_free_i32(s, t0);
}
static void expand_cmp_i64(TCGContext *s, uint32_t dofs, uint32_t aofs, uint32_t bofs,
uint32_t oprsz, TCGCond cond)
{
TCGv_i64 t0 = tcg_temp_new_i64(s);
TCGv_i64 t1 = tcg_temp_new_i64(s);
uint32_t i;
for (i = 0; i < oprsz; i += 8) {
tcg_gen_ld_i64(s, t0, s->cpu_env, aofs + i);
tcg_gen_ld_i64(s, t1, s->cpu_env, bofs + i);
tcg_gen_setcond_i64(s, cond, t0, t0, t1);
tcg_gen_neg_i64(s, t0, t0);
tcg_gen_st_i64(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_i64(s, t1);
tcg_temp_free_i64(s, t0);
}
static void expand_cmp_vec(TCGContext *s, unsigned vece, uint32_t dofs, uint32_t aofs,
uint32_t bofs, uint32_t oprsz, uint32_t tysz,
TCGType type, TCGCond cond)
{
TCGv_vec t0 = tcg_temp_new_vec(s, type);
TCGv_vec t1 = tcg_temp_new_vec(s, type);
uint32_t i;
for (i = 0; i < oprsz; i += tysz) {
tcg_gen_ld_vec(s, t0, s->cpu_env, aofs + i);
tcg_gen_ld_vec(s, t1, s->cpu_env, bofs + i);
tcg_gen_cmp_vec(s, cond, vece, t0, t0, t1);
tcg_gen_st_vec(s, t0, s->cpu_env, dofs + i);
}
tcg_temp_free_vec(s, t1);
tcg_temp_free_vec(s, t0);
}
void tcg_gen_gvec_cmp(TCGContext *s, TCGCond cond, unsigned vece, uint32_t dofs,
uint32_t aofs, uint32_t bofs,
uint32_t oprsz, uint32_t maxsz)
{
static gen_helper_gvec_3 * const eq_fn[4] = {
gen_helper_gvec_eq8, gen_helper_gvec_eq16,
gen_helper_gvec_eq32, gen_helper_gvec_eq64
};
static gen_helper_gvec_3 * const ne_fn[4] = {
gen_helper_gvec_ne8, gen_helper_gvec_ne16,
gen_helper_gvec_ne32, gen_helper_gvec_ne64
};
static gen_helper_gvec_3 * const lt_fn[4] = {
gen_helper_gvec_lt8, gen_helper_gvec_lt16,
gen_helper_gvec_lt32, gen_helper_gvec_lt64
};
static gen_helper_gvec_3 * const le_fn[4] = {
gen_helper_gvec_le8, gen_helper_gvec_le16,
gen_helper_gvec_le32, gen_helper_gvec_le64
};
static gen_helper_gvec_3 * const ltu_fn[4] = {
gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
};
static gen_helper_gvec_3 * const leu_fn[4] = {
gen_helper_gvec_leu8, gen_helper_gvec_leu16,
gen_helper_gvec_leu32, gen_helper_gvec_leu64
};
static gen_helper_gvec_3 * const * const fns[16] = {
[TCG_COND_EQ] = eq_fn,
[TCG_COND_NE] = ne_fn,
[TCG_COND_LT] = lt_fn,
[TCG_COND_LE] = le_fn,
[TCG_COND_LTU] = ltu_fn,
[TCG_COND_LEU] = leu_fn,
};
check_size_align(oprsz, maxsz, dofs | aofs | bofs);
check_overlap_3(dofs, aofs, bofs, maxsz);
if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
do_dup(s, MO_8, dofs, oprsz, maxsz,
NULL, NULL, -(cond == TCG_COND_ALWAYS));
return;
}
/* Recall that ARM SVE allows vector sizes that are not a power of 2.
Expand with successively smaller host vector sizes. The intent is
that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
if (TCG_TARGET_HAS_v256 && check_size_impl(oprsz, 32)
&& tcg_can_emit_vec_op(INDEX_op_cmp_vec, TCG_TYPE_V256, vece)) {
uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
expand_cmp_vec(s, vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
if (some == oprsz) {
goto done;
}
dofs += some;
aofs += some;
bofs += some;
oprsz -= some;
maxsz -= some;
}
if (TCG_TARGET_HAS_v128 && check_size_impl(oprsz, 16)
&& tcg_can_emit_vec_op(INDEX_op_cmp_vec, TCG_TYPE_V128, vece)) {
expand_cmp_vec(s, vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
} else if (TCG_TARGET_HAS_v64
&& check_size_impl(oprsz, 8)
&& (TCG_TARGET_REG_BITS == 32 || vece != MO_64)
&& tcg_can_emit_vec_op(INDEX_op_cmp_vec, TCG_TYPE_V64, vece)) {
expand_cmp_vec(s, vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
} else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
expand_cmp_i64(s, dofs, aofs, bofs, oprsz, cond);
} else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
expand_cmp_i32(s, dofs, aofs, bofs, oprsz, cond);
} else {
gen_helper_gvec_3 * const *fn = fns[cond];
if (fn == NULL) {
uint32_t tmp;
tmp = aofs, aofs = bofs, bofs = tmp;
cond = tcg_swap_cond(cond);
fn = fns[cond];
assert(fn != NULL);
}
tcg_gen_gvec_3_ool(s, dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
return;
}
done:
if (oprsz < maxsz) {
expand_clr(s, dofs + oprsz, maxsz - oprsz);
}
}