unicorn/qemu/target/arm/translate-sve.c
Richard Henderson 5aa51a3a74
target/arm: Implement SVE bitwise shift by vector (predicated)
Backports commit 27721dbb7ae5e2a52f06588cf38854e4cbc613c0 from qemu
2018-05-20 03:07:02 -04:00

1181 lines
34 KiB
C

/*
* AArch64 SVE translation
*
* Copyright (c) 2018 Linaro, Ltd
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "tcg-op.h"
#include "tcg-op-gvec.h"
#include "tcg-gvec-desc.h"
#include "arm_ldst.h"
#include "translate.h"
#include "internals.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "translate-a64.h"
/*
* Helpers for extracting complex instruction fields.
*/
/* See e.g. ASR (immediate, predicated).
* Returns -1 for unallocated encoding; diagnose later.
*/
static int tszimm_esz(int x)
{
x >>= 3; /* discard imm3 */
return 31 - clz32(x);
}
static int tszimm_shr(int x)
{
return (16 << tszimm_esz(x)) - x;
}
/* See e.g. LSL (immediate, predicated). */
static int tszimm_shl(int x)
{
return x - (8 << tszimm_esz(x));
}
/*
* Include the generated decoder.
*/
#include "decode-sve.inc.c"
/*
* Implement all of the translator functions referenced by the decoder.
*/
/* Return the offset info CPUARMState of the predicate vector register Pn.
* Note for this purpose, FFR is P16.
*/
static inline int pred_full_reg_offset(DisasContext *s, int regno)
{
return offsetof(CPUARMState, vfp.pregs[regno]);
}
/* Return the byte size of the whole predicate register, VL / 64. */
static inline int pred_full_reg_size(DisasContext *s)
{
return s->sve_len >> 3;
}
/* Round up the size of a register to a size allowed by
* the tcg vector infrastructure. Any operation which uses this
* size may assume that the bits above pred_full_reg_size are zero,
* and must leave them the same way.
*
* Note that this is not needed for the vector registers as they
* are always properly sized for tcg vectors.
*/
static int size_for_gvec(int size)
{
if (size <= 8) {
return 8;
} else {
return QEMU_ALIGN_UP(size, 16);
}
}
static int pred_gvec_reg_size(DisasContext *s)
{
return size_for_gvec(pred_full_reg_size(s));
}
/* Invoke a vector expander on two Zregs. */
static bool do_vector2_z(DisasContext *s, GVecGen2Fn *gvec_fn,
int esz, int rd, int rn)
{
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned vsz = vec_full_reg_size(s);
gvec_fn(tcg_ctx, esz, vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn), vsz, vsz);
}
return true;
}
/* Invoke a vector expander on three Zregs. */
static bool do_vector3_z(DisasContext *s, GVecGen3Fn *gvec_fn,
int esz, int rd, int rn, int rm)
{
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned vsz = vec_full_reg_size(s);
gvec_fn(tcg_ctx, esz, vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), vsz, vsz);
}
return true;
}
/* Invoke a vector move on two Zregs. */
static bool do_mov_z(DisasContext *s, int rd, int rn)
{
return do_vector2_z(s, tcg_gen_gvec_mov, 0, rd, rn);
}
/* Invoke a vector expander on two Pregs. */
static bool do_vector2_p(DisasContext *s, GVecGen2Fn *gvec_fn,
int esz, int rd, int rn)
{
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned psz = pred_gvec_reg_size(s);
gvec_fn(tcg_ctx, esz, pred_full_reg_offset(s, rd),
pred_full_reg_offset(s, rn), psz, psz);
}
return true;
}
/* Invoke a vector expander on three Pregs. */
static bool do_vector3_p(DisasContext *s, GVecGen3Fn *gvec_fn,
int esz, int rd, int rn, int rm)
{
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned psz = pred_gvec_reg_size(s);
gvec_fn(tcg_ctx, esz, pred_full_reg_offset(s, rd),
pred_full_reg_offset(s, rn),
pred_full_reg_offset(s, rm), psz, psz);
}
return true;
}
/* Invoke a vector operation on four Pregs. */
static bool do_vecop4_p(DisasContext *s, const GVecGen4 *gvec_op,
int rd, int rn, int rm, int rg)
{
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned psz = pred_gvec_reg_size(s);
tcg_gen_gvec_4(tcg_ctx, pred_full_reg_offset(s, rd),
pred_full_reg_offset(s, rn),
pred_full_reg_offset(s, rm),
pred_full_reg_offset(s, rg),
psz, psz, gvec_op);
}
return true;
}
/* Invoke a vector move on two Pregs. */
static bool do_mov_p(DisasContext *s, int rd, int rn)
{
return do_vector2_p(s, tcg_gen_gvec_mov, 0, rd, rn);
}
/* Set the cpu flags as per a return from an SVE helper. */
static void do_pred_flags(DisasContext *s, TCGv_i32 t)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
tcg_gen_mov_i32(tcg_ctx, tcg_ctx->cpu_NF, t);
tcg_gen_andi_i32(tcg_ctx, tcg_ctx->cpu_ZF, t, 2);
tcg_gen_andi_i32(tcg_ctx, tcg_ctx->cpu_CF, t, 1);
tcg_gen_movi_i32(tcg_ctx, tcg_ctx->cpu_VF, 0);
}
/* Subroutines computing the ARM PredTest psuedofunction. */
static void do_predtest1(DisasContext *s, TCGv_i64 d, TCGv_i64 g)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 t = tcg_temp_new_i32(tcg_ctx);
gen_helper_sve_predtest1(tcg_ctx, t, d, g);
do_pred_flags(s, t);
tcg_temp_free_i32(tcg_ctx, t);
}
static void do_predtest(DisasContext *s, int dofs, int gofs, int words)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr dptr = tcg_temp_new_ptr(tcg_ctx);
TCGv_ptr gptr = tcg_temp_new_ptr(tcg_ctx);
TCGv_i32 t;
tcg_gen_addi_ptr(tcg_ctx, dptr, tcg_ctx->cpu_env, dofs);
tcg_gen_addi_ptr(tcg_ctx, gptr, tcg_ctx->cpu_env, gofs);
t = tcg_const_i32(tcg_ctx, words);
gen_helper_sve_predtest(tcg_ctx, t, dptr, gptr, t);
tcg_temp_free_ptr(tcg_ctx, dptr);
tcg_temp_free_ptr(tcg_ctx, gptr);
do_pred_flags(s, t);
tcg_temp_free_i32(tcg_ctx, t);
}
/* For each element size, the bits within a predicate word that are active. */
const uint64_t pred_esz_masks[4] = {
0xffffffffffffffffull, 0x5555555555555555ull,
0x1111111111111111ull, 0x0101010101010101ull
};
/*
*** SVE Logical - Unpredicated Group
*/
static bool trans_AND_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
}
static bool trans_ORR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
if (a->rn == a->rm) { /* MOV */
return do_mov_z(s, a->rd, a->rn);
} else {
return do_vector3_z(s, tcg_gen_gvec_or, 0, a->rd, a->rn, a->rm);
}
}
static bool trans_EOR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_xor, 0, a->rd, a->rn, a->rm);
}
static bool trans_BIC_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
}
/*
*** SVE Integer Arithmetic - Binary Predicated Group
*/
static bool do_zpzz_ool(DisasContext *s, arg_rprr_esz *a, gen_helper_gvec_4 *fn)
{
unsigned vsz = vec_full_reg_size(s);
if (fn == NULL) {
return false;
}
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
tcg_gen_gvec_4_ool(tcg_ctx, vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm),
pred_full_reg_offset(s, a->pg),
vsz, vsz, 0, fn);
}
return true;
}
#define DO_ZPZZ(NAME, name) \
static bool trans_##NAME##_zpzz(DisasContext *s, arg_rprr_esz *a, \
uint32_t insn) \
{ \
static gen_helper_gvec_4 * const fns[4] = { \
gen_helper_sve_##name##_zpzz_b, gen_helper_sve_##name##_zpzz_h, \
gen_helper_sve_##name##_zpzz_s, gen_helper_sve_##name##_zpzz_d, \
}; \
return do_zpzz_ool(s, a, fns[a->esz]); \
}
DO_ZPZZ(AND, and)
DO_ZPZZ(EOR, eor)
DO_ZPZZ(ORR, orr)
DO_ZPZZ(BIC, bic)
DO_ZPZZ(ADD, add)
DO_ZPZZ(SUB, sub)
DO_ZPZZ(SMAX, smax)
DO_ZPZZ(UMAX, umax)
DO_ZPZZ(SMIN, smin)
DO_ZPZZ(UMIN, umin)
DO_ZPZZ(SABD, sabd)
DO_ZPZZ(UABD, uabd)
DO_ZPZZ(MUL, mul)
DO_ZPZZ(SMULH, smulh)
DO_ZPZZ(UMULH, umulh)
DO_ZPZZ(ASR, asr)
DO_ZPZZ(LSR, lsr)
DO_ZPZZ(LSL, lsl)
static bool trans_SDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
{
static gen_helper_gvec_4 * const fns[4] = {
NULL, NULL, gen_helper_sve_sdiv_zpzz_s, gen_helper_sve_sdiv_zpzz_d
};
return do_zpzz_ool(s, a, fns[a->esz]);
}
static bool trans_UDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
{
static gen_helper_gvec_4 * const fns[4] = {
NULL, NULL, gen_helper_sve_udiv_zpzz_s, gen_helper_sve_udiv_zpzz_d
};
return do_zpzz_ool(s, a, fns[a->esz]);
}
#undef DO_ZPZZ
/*
*** SVE Integer Reduction Group
*/
typedef void gen_helper_gvec_reduc(TCGContext *, TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_i32);
static bool do_vpz_ool(DisasContext *s, arg_rpr_esz *a,
gen_helper_gvec_reduc *fn)
{
unsigned vsz = vec_full_reg_size(s);
TCGv_ptr t_zn, t_pg;
TCGv_i32 desc;
TCGv_i64 temp;
if (fn == NULL) {
return false;
}
if (!sve_access_check(s)) {
return true;
}
TCGContext *tcg_ctx = s->uc->tcg_ctx;
desc = tcg_const_i32(tcg_ctx, simd_desc(vsz, vsz, 0));
temp = tcg_temp_new_i64(tcg_ctx);
t_zn = tcg_temp_new_ptr(tcg_ctx);
t_pg = tcg_temp_new_ptr(tcg_ctx);
tcg_gen_addi_ptr(tcg_ctx, t_zn, tcg_ctx->cpu_env, vec_full_reg_offset(s, a->rn));
tcg_gen_addi_ptr(tcg_ctx, t_pg, tcg_ctx->cpu_env, pred_full_reg_offset(s, a->pg));
fn(tcg_ctx, temp, t_zn, t_pg, desc);
tcg_temp_free_ptr(tcg_ctx, t_zn);
tcg_temp_free_ptr(tcg_ctx, t_pg);
tcg_temp_free_i32(tcg_ctx, desc);
write_fp_dreg(s, a->rd, temp);
tcg_temp_free_i64(tcg_ctx, temp);
return true;
}
#define DO_VPZ(NAME, name) \
static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
{ \
static gen_helper_gvec_reduc * const fns[4] = { \
gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
}; \
return do_vpz_ool(s, a, fns[a->esz]); \
}
DO_VPZ(ORV, orv)
DO_VPZ(ANDV, andv)
DO_VPZ(EORV, eorv)
DO_VPZ(UADDV, uaddv)
DO_VPZ(SMAXV, smaxv)
DO_VPZ(UMAXV, umaxv)
DO_VPZ(SMINV, sminv)
DO_VPZ(UMINV, uminv)
static bool trans_SADDV(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
static gen_helper_gvec_reduc * const fns[4] = {
gen_helper_sve_saddv_b, gen_helper_sve_saddv_h,
gen_helper_sve_saddv_s, NULL
};
return do_vpz_ool(s, a, fns[a->esz]);
}
#undef DO_VPZ
/*
*** SVE Shift by Immediate - Predicated Group
*/
/* Store zero into every active element of Zd. We will use this for two
* and three-operand predicated instructions for which logic dictates a
* zero result.
*/
static bool do_clr_zp(DisasContext *s, int rd, int pg, int esz)
{
static gen_helper_gvec_2 * const fns[4] = {
gen_helper_sve_clr_b, gen_helper_sve_clr_h,
gen_helper_sve_clr_s, gen_helper_sve_clr_d,
};
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_2_ool(tcg_ctx, vec_full_reg_offset(s, rd),
pred_full_reg_offset(s, pg),
vsz, vsz, 0, fns[esz]);
}
return true;
}
static bool do_zpzi_ool(DisasContext *s, arg_rpri_esz *a,
gen_helper_gvec_3 *fn)
{
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_3_ool(tcg_ctx, vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
pred_full_reg_offset(s, a->pg),
vsz, vsz, a->imm, fn);
}
return true;
}
static bool trans_ASR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
gen_helper_sve_asr_zpzi_b, gen_helper_sve_asr_zpzi_h,
gen_helper_sve_asr_zpzi_s, gen_helper_sve_asr_zpzi_d,
};
if (a->esz < 0) {
/* Invalid tsz encoding -- see tszimm_esz. */
return false;
}
/* Shift by element size is architecturally valid. For
arithmetic right-shift, it's the same as by one less. */
a->imm = MIN(a->imm, (8 << a->esz) - 1);
return do_zpzi_ool(s, a, fns[a->esz]);
}
static bool trans_LSR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
gen_helper_sve_lsr_zpzi_b, gen_helper_sve_lsr_zpzi_h,
gen_helper_sve_lsr_zpzi_s, gen_helper_sve_lsr_zpzi_d,
};
if (a->esz < 0) {
return false;
}
/* Shift by element size is architecturally valid.
For logical shifts, it is a zeroing operation. */
if (a->imm >= (8 << a->esz)) {
return do_clr_zp(s, a->rd, a->pg, a->esz);
} else {
return do_zpzi_ool(s, a, fns[a->esz]);
}
}
static bool trans_LSL_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
gen_helper_sve_lsl_zpzi_b, gen_helper_sve_lsl_zpzi_h,
gen_helper_sve_lsl_zpzi_s, gen_helper_sve_lsl_zpzi_d,
};
if (a->esz < 0) {
return false;
}
/* Shift by element size is architecturally valid.
For logical shifts, it is a zeroing operation. */
if (a->imm >= (8 << a->esz)) {
return do_clr_zp(s, a->rd, a->pg, a->esz);
} else {
return do_zpzi_ool(s, a, fns[a->esz]);
}
}
static bool trans_ASRD(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
gen_helper_sve_asrd_b, gen_helper_sve_asrd_h,
gen_helper_sve_asrd_s, gen_helper_sve_asrd_d,
};
if (a->esz < 0) {
return false;
}
/* Shift by element size is architecturally valid. For arithmetic
right shift for division, it is a zeroing operation. */
if (a->imm >= (8 << a->esz)) {
return do_clr_zp(s, a->rd, a->pg, a->esz);
} else {
return do_zpzi_ool(s, a, fns[a->esz]);
}
}
/*
*** SVE Predicate Logical Operations Group
*/
static bool do_pppp_flags(DisasContext *s, arg_rprr_s *a,
const GVecGen4 *gvec_op)
{
if (!sve_access_check(s)) {
return true;
}
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned psz = pred_gvec_reg_size(s);
int dofs = pred_full_reg_offset(s, a->rd);
int nofs = pred_full_reg_offset(s, a->rn);
int mofs = pred_full_reg_offset(s, a->rm);
int gofs = pred_full_reg_offset(s, a->pg);
if (psz == 8) {
/* Do the operation and the flags generation in temps. */
TCGv_i64 pd = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 pn = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 pm = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 pg = tcg_temp_new_i64(tcg_ctx);
tcg_gen_ld_i64(tcg_ctx, pn, tcg_ctx->cpu_env, nofs);
tcg_gen_ld_i64(tcg_ctx, pm, tcg_ctx->cpu_env, mofs);
tcg_gen_ld_i64(tcg_ctx, pg, tcg_ctx->cpu_env, gofs);
gvec_op->fni8(tcg_ctx, pd, pn, pm, pg);
tcg_gen_st_i64(tcg_ctx, pd, tcg_ctx->cpu_env, dofs);
do_predtest1(s, pd, pg);
tcg_temp_free_i64(tcg_ctx, pd);
tcg_temp_free_i64(tcg_ctx, pn);
tcg_temp_free_i64(tcg_ctx, pm);
tcg_temp_free_i64(tcg_ctx, pg);
} else {
/* The operation and flags generation is large. The computation
* of the flags depends on the original contents of the guarding
* predicate. If the destination overwrites the guarding predicate,
* then the easiest way to get this right is to save a copy.
*/
int tofs = gofs;
if (a->rd == a->pg) {
tofs = offsetof(CPUARMState, vfp.preg_tmp);
tcg_gen_gvec_mov(tcg_ctx, 0, tofs, gofs, psz, psz);
}
tcg_gen_gvec_4(tcg_ctx, dofs, nofs, mofs, gofs, psz, psz, gvec_op);
do_predtest(s, dofs, tofs, psz / 8);
}
return true;
}
static void gen_and_pg_i64(TCGContext *s, TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_and_i64(s, pd, pn, pm);
tcg_gen_and_i64(s, pd, pd, pg);
}
static void gen_and_pg_vec(TCGContext *s, unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_and_vec(s, vece, pd, pn, pm);
tcg_gen_and_vec(s, vece, pd, pd, pg);
}
static bool trans_AND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
gen_and_pg_i64,
NULL,
gen_and_pg_vec,
gen_helper_sve_and_pppp,
0,
0,
0,
TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else if (a->rn == a->rm) {
if (a->pg == a->rn) {
return do_mov_p(s, a->rd, a->rn);
} else {
return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->pg);
}
} else if (a->pg == a->rn || a->pg == a->rm) {
return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_bic_pg_i64(TCGContext *s, TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_andc_i64(s, pd, pn, pm);
tcg_gen_and_i64(s, pd, pd, pg);
}
static void gen_bic_pg_vec(TCGContext *s, unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_andc_vec(s, vece, pd, pn, pm);
tcg_gen_and_vec(s, vece, pd, pd, pg);
}
static bool trans_BIC_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
gen_bic_pg_i64,
NULL,
gen_bic_pg_vec,
gen_helper_sve_bic_pppp,
0,
0,
0,
TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else if (a->pg == a->rn) {
return do_vector3_p(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_eor_pg_i64(TCGContext *s, TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_xor_i64(s, pd, pn, pm);
tcg_gen_and_i64(s, pd, pd, pg);
}
static void gen_eor_pg_vec(TCGContext *s, unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_xor_vec(s, vece, pd, pn, pm);
tcg_gen_and_vec(s, vece, pd, pd, pg);
}
static bool trans_EOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
gen_eor_pg_i64,
NULL,
gen_eor_pg_vec,
gen_helper_sve_eor_pppp,
0,
0,
0,
TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_sel_pg_i64(TCGContext *s, TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_and_i64(s, pn, pn, pg);
tcg_gen_andc_i64(s, pm, pm, pg);
tcg_gen_or_i64(s, pd, pn, pm);
}
static void gen_sel_pg_vec(TCGContext *s, unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_and_vec(s, vece, pn, pn, pg);
tcg_gen_andc_vec(s, vece, pm, pm, pg);
tcg_gen_or_vec(s, vece, pd, pn, pm);
}
static bool trans_SEL_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
gen_sel_pg_i64,
NULL,
gen_sel_pg_vec,
gen_helper_sve_sel_pppp,
0,
0,
0,
TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return false;
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_orr_pg_i64(TCGContext *s, TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_or_i64(s, pd, pn, pm);
tcg_gen_and_i64(s, pd, pd, pg);
}
static void gen_orr_pg_vec(TCGContext *s, unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_or_vec(s, vece, pd, pn, pm);
tcg_gen_and_vec(s, vece, pd, pd, pg);
}
static bool trans_ORR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
gen_orr_pg_i64,
NULL,
gen_orr_pg_vec,
gen_helper_sve_orr_pppp,
0,
0,
0,
TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else if (a->pg == a->rn && a->rn == a->rm) {
return do_mov_p(s, a->rd, a->rn);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_orn_pg_i64(TCGContext *s, TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_orc_i64(s, pd, pn, pm);
tcg_gen_and_i64(s, pd, pd, pg);
}
static void gen_orn_pg_vec(TCGContext *s, unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_orc_vec(s, vece, pd, pn, pm);
tcg_gen_and_vec(s, vece, pd, pd, pg);
}
static bool trans_ORN_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
gen_orn_pg_i64,
NULL,
gen_orn_pg_vec,
gen_helper_sve_orn_pppp,
0,
0,
0,
TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_nor_pg_i64(TCGContext *s, TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_or_i64(s, pd, pn, pm);
tcg_gen_andc_i64(s, pd, pg, pd);
}
static void gen_nor_pg_vec(TCGContext *s, unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_or_vec(s, vece, pd, pn, pm);
tcg_gen_andc_vec(s, vece, pd, pg, pd);
}
static bool trans_NOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
gen_nor_pg_i64,
NULL,
gen_nor_pg_vec,
gen_helper_sve_nor_pppp,
0,
0,
0,
TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_nand_pg_i64(TCGContext *s, TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_and_i64(s, pd, pn, pm);
tcg_gen_andc_i64(s, pd, pg, pd);
}
static void gen_nand_pg_vec(TCGContext *s, unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_and_vec(s, vece, pd, pn, pm);
tcg_gen_andc_vec(s, vece, pd, pg, pd);
}
static bool trans_NAND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
gen_nand_pg_i64,
NULL,
gen_nand_pg_vec,
gen_helper_sve_nand_pppp,
0,
0,
0,
TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
/*
*** SVE Predicate Misc Group
*/
static bool trans_PTEST(DisasContext *s, arg_PTEST *a, uint32_t insn)
{
if (sve_access_check(s)) {
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int nofs = pred_full_reg_offset(s, a->rn);
int gofs = pred_full_reg_offset(s, a->pg);
int words = DIV_ROUND_UP(pred_full_reg_size(s), 8);
if (words == 1) {
TCGv_i64 pn = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 pg = tcg_temp_new_i64(tcg_ctx);
tcg_gen_ld_i64(tcg_ctx, pn, tcg_ctx->cpu_env, nofs);
tcg_gen_ld_i64(tcg_ctx, pg, tcg_ctx->cpu_env, gofs);
do_predtest1(s, pn, pg);
tcg_temp_free_i64(tcg_ctx, pn);
tcg_temp_free_i64(tcg_ctx, pg);
} else {
do_predtest(s, nofs, gofs, words);
}
}
return true;
}
/* See the ARM pseudocode DecodePredCount. */
static unsigned decode_pred_count(unsigned fullsz, int pattern, int esz)
{
unsigned elements = fullsz >> esz;
unsigned bound;
switch (pattern) {
case 0x0: /* POW2 */
return pow2floor(elements);
case 0x1: /* VL1 */
case 0x2: /* VL2 */
case 0x3: /* VL3 */
case 0x4: /* VL4 */
case 0x5: /* VL5 */
case 0x6: /* VL6 */
case 0x7: /* VL7 */
case 0x8: /* VL8 */
bound = pattern;
break;
case 0x9: /* VL16 */
case 0xa: /* VL32 */
case 0xb: /* VL64 */
case 0xc: /* VL128 */
case 0xd: /* VL256 */
bound = 16 << (pattern - 9);
break;
case 0x1d: /* MUL4 */
return elements - elements % 4;
case 0x1e: /* MUL3 */
return elements - elements % 3;
case 0x1f: /* ALL */
return elements;
default: /* #uimm5 */
return 0;
}
return elements >= bound ? bound : 0;
}
/* This handles all of the predicate initialization instructions,
* PTRUE, PFALSE, SETFFR. For PFALSE, we will have set PAT == 32
* so that decode_pred_count returns 0. For SETFFR, we will have
* set RD == 16 == FFR.
*/
static bool do_predset(DisasContext *s, int esz, int rd, int pat, bool setflag)
{
if (!sve_access_check(s)) {
return true;
}
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned fullsz = vec_full_reg_size(s);
unsigned ofs = pred_full_reg_offset(s, rd);
unsigned numelem, setsz, i;
uint64_t word, lastword;
TCGv_i64 t;
numelem = decode_pred_count(fullsz, pat, esz);
/* Determine what we must store into each bit, and how many. */
if (numelem == 0) {
lastword = word = 0;
setsz = fullsz;
} else {
setsz = numelem << esz;
lastword = word = pred_esz_masks[esz];
if (setsz % 64) {
lastword &= ~(-1ull << (setsz % 64));
}
}
t = tcg_temp_new_i64(tcg_ctx);
if (fullsz <= 64) {
tcg_gen_movi_i64(tcg_ctx, t, lastword);
tcg_gen_st_i64(tcg_ctx, t, tcg_ctx->cpu_env, ofs);
goto done;
}
if (word == lastword) {
unsigned maxsz = size_for_gvec(fullsz / 8);
unsigned oprsz = size_for_gvec(setsz / 8);
if (oprsz * 8 == setsz) {
tcg_gen_gvec_dup64i(tcg_ctx, ofs, oprsz, maxsz, word);
goto done;
}
if (oprsz * 8 == setsz + 8) {
tcg_gen_gvec_dup64i(tcg_ctx, ofs, oprsz, maxsz, word);
tcg_gen_movi_i64(tcg_ctx, t, 0);
tcg_gen_st_i64(tcg_ctx, t, tcg_ctx->cpu_env, ofs + oprsz - 8);
goto done;
}
}
setsz /= 8;
fullsz /= 8;
tcg_gen_movi_i64(tcg_ctx, t, word);
for (i = 0; i < setsz; i += 8) {
tcg_gen_st_i64(tcg_ctx, t, tcg_ctx->cpu_env, ofs + i);
}
if (lastword != word) {
tcg_gen_movi_i64(tcg_ctx, t, lastword);
tcg_gen_st_i64(tcg_ctx, t, tcg_ctx->cpu_env, ofs + i);
i += 8;
}
if (i < fullsz) {
tcg_gen_movi_i64(tcg_ctx, t, 0);
for (; i < fullsz; i += 8) {
tcg_gen_st_i64(tcg_ctx, t, tcg_ctx->cpu_env, ofs + i);
}
}
done:
tcg_temp_free_i64(tcg_ctx, t);
/* PTRUES */
if (setflag) {
tcg_gen_movi_i32(tcg_ctx, tcg_ctx->cpu_NF, -(word != 0));
tcg_gen_movi_i32(tcg_ctx, tcg_ctx->cpu_CF, word == 0);
tcg_gen_movi_i32(tcg_ctx, tcg_ctx->cpu_VF, 0);
tcg_gen_mov_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_NF);
}
return true;
}
static bool trans_PTRUE(DisasContext *s, arg_PTRUE *a, uint32_t insn)
{
return do_predset(s, a->esz, a->rd, a->pat, a->s);
}
static bool trans_SETFFR(DisasContext *s, arg_SETFFR *a, uint32_t insn)
{
/* Note pat == 31 is #all, to set all elements. */
return do_predset(s, 0, FFR_PRED_NUM, 31, false);
}
static bool trans_PFALSE(DisasContext *s, arg_PFALSE *a, uint32_t insn)
{
/* Note pat == 32 is #unimp, to set no elements. */
return do_predset(s, 0, a->rd, 32, false);
}
static bool trans_RDFFR_p(DisasContext *s, arg_RDFFR_p *a, uint32_t insn)
{
/* The path through do_pppp_flags is complicated enough to want to avoid
* duplication. Frob the arguments into the form of a predicated AND.
*/
arg_rprr_s alt_a = {
.rd = a->rd, .pg = a->pg, .s = a->s,
.rn = FFR_PRED_NUM, .rm = FFR_PRED_NUM,
};
return trans_AND_pppp(s, &alt_a, insn);
}
static bool trans_RDFFR(DisasContext *s, arg_RDFFR *a, uint32_t insn)
{
return do_mov_p(s, a->rd, FFR_PRED_NUM);
}
static bool trans_WRFFR(DisasContext *s, arg_WRFFR *a, uint32_t insn)
{
return do_mov_p(s, FFR_PRED_NUM, a->rn);
}
static bool do_pfirst_pnext(DisasContext *s, arg_rr_esz *a,
void (*gen_fn)(TCGContext *, TCGv_i32, TCGv_ptr,
TCGv_ptr, TCGv_i32))
{
if (!sve_access_check(s)) {
return true;
}
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr t_pd = tcg_temp_new_ptr(tcg_ctx);
TCGv_ptr t_pg = tcg_temp_new_ptr(tcg_ctx);
TCGv_i32 t;
unsigned desc;
desc = DIV_ROUND_UP(pred_full_reg_size(s), 8);
desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
tcg_gen_addi_ptr(tcg_ctx, t_pd, tcg_ctx->cpu_env, pred_full_reg_offset(s, a->rd));
tcg_gen_addi_ptr(tcg_ctx, t_pg, tcg_ctx->cpu_env, pred_full_reg_offset(s, a->rn));
t = tcg_const_i32(tcg_ctx, desc);
gen_fn(tcg_ctx, t, t_pd, t_pg, t);
tcg_temp_free_ptr(tcg_ctx, t_pd);
tcg_temp_free_ptr(tcg_ctx, t_pg);
do_pred_flags(s, t);
tcg_temp_free_i32(tcg_ctx, t);
return true;
}
static bool trans_PFIRST(DisasContext *s, arg_rr_esz *a, uint32_t insn)
{
return do_pfirst_pnext(s, a, gen_helper_sve_pfirst);
}
static bool trans_PNEXT(DisasContext *s, arg_rr_esz *a, uint32_t insn)
{
return do_pfirst_pnext(s, a, gen_helper_sve_pnext);
}
/*
*** SVE Memory - 32-bit Gather and Unsized Contiguous Group
*/
/* Subroutine loading a vector register at VOFS of LEN bytes.
* The load should begin at the address Rn + IMM.
*/
static void do_ldr(DisasContext *s, uint32_t vofs, uint32_t len,
int rn, int imm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t len_align = QEMU_ALIGN_DOWN(len, 8);
uint32_t len_remain = len % 8;
uint32_t nparts = len / 8 + ctpop8(len_remain);
int midx = get_mem_index(s);
TCGv_i64 addr, t0, t1;
addr = tcg_temp_new_i64(tcg_ctx);
t0 = tcg_temp_new_i64(tcg_ctx);
/* Note that unpredicated load/store of vector/predicate registers
* are defined as a stream of bytes, which equates to little-endian
* operations on larger quantities. There is no nice way to force
* a little-endian load for aarch64_be-linux-user out of line.
*
* Attempt to keep code expansion to a minimum by limiting the
* amount of unrolling done.
*/
if (nparts <= 4) {
int i;
for (i = 0; i < len_align; i += 8) {
tcg_gen_addi_i64(tcg_ctx, addr, cpu_reg_sp(s, rn), imm + i);
tcg_gen_qemu_ld_i64(s->uc, t0, addr, midx, MO_LEQ);
tcg_gen_st_i64(tcg_ctx, t0, tcg_ctx->cpu_env, vofs + i);
}
} else {
TCGLabel *loop = gen_new_label(tcg_ctx);
TCGv_ptr tp, i = tcg_const_local_ptr(tcg_ctx, 0);
gen_set_label(tcg_ctx, loop);
/* Minimize the number of local temps that must be re-read from
* the stack each iteration. Instead, re-compute values other
* than the loop counter.
*/
tp = tcg_temp_new_ptr(tcg_ctx);
tcg_gen_addi_ptr(tcg_ctx, tp, i, imm);
tcg_gen_extu_ptr_i64(tcg_ctx, addr, tp);
tcg_gen_add_i64(tcg_ctx, addr, addr, cpu_reg_sp(s, rn));
tcg_gen_qemu_ld_i64(s->uc, t0, addr, midx, MO_LEQ);
tcg_gen_add_ptr(tcg_ctx, tp, tcg_ctx->cpu_env, i);
tcg_gen_addi_ptr(tcg_ctx, i, i, 8);
tcg_gen_st_i64(tcg_ctx, t0, tp, vofs);
tcg_temp_free_ptr(tcg_ctx, tp);
tcg_gen_brcondi_ptr(tcg_ctx, TCG_COND_LTU, i, len_align, loop);
tcg_temp_free_ptr(tcg_ctx, i);
}
/* Predicate register loads can be any multiple of 2.
* Note that we still store the entire 64-bit unit into cpu_env.
*/
if (len_remain) {
tcg_gen_addi_i64(tcg_ctx, addr, cpu_reg_sp(s, rn), imm + len_align);
switch (len_remain) {
case 2:
case 4:
case 8:
tcg_gen_qemu_ld_i64(s->uc, t0, addr, midx, MO_LE | ctz32(len_remain));
break;
case 6:
t1 = tcg_temp_new_i64(tcg_ctx);
tcg_gen_qemu_ld_i64(s->uc, t0, addr, midx, MO_LEUL);
tcg_gen_addi_i64(tcg_ctx, addr, addr, 4);
tcg_gen_qemu_ld_i64(s->uc, t1, addr, midx, MO_LEUW);
tcg_gen_deposit_i64(tcg_ctx, t0, t0, t1, 32, 32);
tcg_temp_free_i64(tcg_ctx, t1);
break;
default:
g_assert_not_reached();
}
tcg_gen_st_i64(tcg_ctx, t0, tcg_ctx->cpu_env, vofs + len_align);
}
tcg_temp_free_i64(tcg_ctx, addr);
tcg_temp_free_i64(tcg_ctx, t0);
}
static bool trans_LDR_zri(DisasContext *s, arg_rri *a, uint32_t insn)
{
if (sve_access_check(s)) {
int size = vec_full_reg_size(s);
int off = vec_full_reg_offset(s, a->rd);
do_ldr(s, off, size, a->rn, a->imm * size);
}
return true;
}
static bool trans_LDR_pri(DisasContext *s, arg_rri *a, uint32_t insn)
{
if (sve_access_check(s)) {
int size = pred_full_reg_size(s);
int off = pred_full_reg_offset(s, a->rd);
do_ldr(s, off, size, a->rn, a->imm * size);
}
return true;
}