mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2024-12-26 00:55:30 +00:00
4bb37fc3c1
Backports commit 5f716a82388eb09754dd900e7dbb8ffa15897a28 from qemu
404 lines
17 KiB
C
404 lines
17 KiB
C
#ifndef TARGET_ARM_TRANSLATE_H
|
|
#define TARGET_ARM_TRANSLATE_H
|
|
|
|
#include "exec/translator.h"
|
|
#include "internals.h"
|
|
|
|
/* internal defines */
|
|
typedef struct DisasContext {
|
|
DisasContextBase base;
|
|
const ARMISARegisters *isar;
|
|
|
|
/* The address of the current instruction being translated. */
|
|
target_ulong pc_curr;
|
|
target_ulong page_start;
|
|
uint32_t insn;
|
|
/* Nonzero if this instruction has been conditionally skipped. */
|
|
int condjmp;
|
|
/* The label that will be jumped to when the instruction is skipped. */
|
|
TCGLabel *condlabel;
|
|
/* Thumb-2 conditional execution bits. */
|
|
int condexec_mask;
|
|
int condexec_cond;
|
|
int thumb;
|
|
int sctlr_b;
|
|
MemOp be_data;
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
int user;
|
|
#endif
|
|
ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
|
|
uint8_t tbii; /* TBI1|TBI0 for insns */
|
|
uint8_t tbid; /* TBI1|TBI0 for data */
|
|
uint8_t tcma; /* TCMA1|TCMA0 for MTE */
|
|
bool ns; /* Use non-secure CPREG bank on access */
|
|
int fp_excp_el; /* FP exception EL or 0 if enabled */
|
|
int sve_excp_el; /* SVE exception EL or 0 if enabled */
|
|
int sve_len; /* SVE vector length in bytes */
|
|
/* Flag indicating that exceptions from secure mode are routed to EL3. */
|
|
bool secure_routed_to_el3;
|
|
bool vfp_enabled; /* FP enabled via FPSCR.EN */
|
|
int vec_len;
|
|
int vec_stride;
|
|
bool v7m_handler_mode;
|
|
bool v8m_secure; /* true if v8M and we're in Secure mode */
|
|
bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
|
|
bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
|
|
bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
|
|
bool v7m_lspact; /* FPCCR.LSPACT set */
|
|
/* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
|
|
* so that top level loop can generate correct syndrome information.
|
|
*/
|
|
uint32_t svc_imm;
|
|
int aarch64;
|
|
int current_el;
|
|
/* Debug target exception level for single-step exceptions */
|
|
int debug_target_el;
|
|
GHashTable *cp_regs;
|
|
uint64_t features; /* CPU features bits */
|
|
/* Because unallocated encodings generate different exception syndrome
|
|
* information from traps due to FP being disabled, we can't do a single
|
|
* "is fp access disabled" check at a high level in the decode tree.
|
|
* To help in catching bugs where the access check was forgotten in some
|
|
* code path, we set this flag when the access check is done, and assert
|
|
* that it is set at the point where we actually touch the FP regs.
|
|
*/
|
|
bool fp_access_checked;
|
|
/* ARMv8 single-step state (this is distinct from the QEMU gdbstub
|
|
* single-step support).
|
|
*/
|
|
bool ss_active;
|
|
bool pstate_ss;
|
|
/* True if the insn just emitted was a load-exclusive instruction
|
|
* (necessary for syndrome information for single step exceptions),
|
|
* ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
|
|
*/
|
|
bool is_ldex;
|
|
/* True if AccType_UNPRIV should be used for LDTR et al */
|
|
bool unpriv;
|
|
/* True if v8.3-PAuth is active. */
|
|
bool pauth_active;
|
|
/* True if v8.5-MTE access to tags is enabled. */
|
|
bool ata;
|
|
/* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */
|
|
bool mte_active[2];
|
|
/* Bottom two bits of XScale c15_cpar coprocessor access control reg */
|
|
int c15_cpar;
|
|
/* True with v8.5-BTI and SCTLR_ELx.BT* set. */
|
|
bool bt;
|
|
/* True if any CP15 access is trapped by HSTR_EL2 */
|
|
bool hstr_active;
|
|
/*
|
|
* >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
|
|
* < 0, set by the current instruction.
|
|
*/
|
|
int8_t btype;
|
|
/* A copy of cpu->dcz_blocksize. */
|
|
uint8_t dcz_blocksize;
|
|
/* True if this page is guarded. */
|
|
bool guarded_page;
|
|
/* TCG op of the current insn_start. */
|
|
TCGOp *insn_start;
|
|
#define TMP_A64_MAX 16
|
|
int tmp_a64_count;
|
|
TCGv_i64 tmp_a64[TMP_A64_MAX];
|
|
|
|
// Unicorn: Moved here to avoid global state.
|
|
TCGv_i64 V0;
|
|
TCGv_i64 V1;
|
|
TCGv_i64 M0;
|
|
|
|
// Unicorn engine
|
|
struct uc_struct *uc;
|
|
} DisasContext;
|
|
|
|
typedef struct DisasCompare {
|
|
TCGCond cond;
|
|
TCGv_i32 value;
|
|
bool value_global;
|
|
} DisasCompare;
|
|
|
|
static inline int arm_dc_feature(DisasContext *dc, int feature)
|
|
{
|
|
return (dc->features & (1ULL << feature)) != 0;
|
|
}
|
|
|
|
static inline int get_mem_index(DisasContext *s)
|
|
{
|
|
return arm_to_core_mmu_idx(s->mmu_idx);
|
|
}
|
|
|
|
/* Function used to determine the target exception EL when otherwise not known
|
|
* or default.
|
|
*/
|
|
static inline int default_exception_el(DisasContext *s)
|
|
{
|
|
/* If we are coming from secure EL0 in a system with a 32-bit EL3, then
|
|
* there is no secure EL1, so we route exceptions to EL3. Otherwise,
|
|
* exceptions can only be routed to ELs above 1, so we target the higher of
|
|
* 1 or the current EL.
|
|
*/
|
|
return (s->mmu_idx == ARMMMUIdx_SE10_0 && s->secure_routed_to_el3)
|
|
? 3 : MAX(1, s->current_el);
|
|
}
|
|
|
|
static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
|
|
{
|
|
/* We don't need to save all of the syndrome so we mask and shift
|
|
* out unneeded bits to help the sleb128 encoder do a better job.
|
|
*/
|
|
syn &= ARM_INSN_START_WORD2_MASK;
|
|
syn >>= ARM_INSN_START_WORD2_SHIFT;
|
|
|
|
/* We check and clear insn_start_idx to catch multiple updates. */
|
|
assert(s->insn_start != NULL);
|
|
tcg_set_insn_start_param(s->insn_start, 2, syn);
|
|
s->insn_start = NULL;
|
|
}
|
|
|
|
/* target-specific extra values for is_jmp */
|
|
/* is_jmp field values */
|
|
#define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
|
|
/* CPU state was modified dynamically; exit to main loop for interrupts. */
|
|
#define DISAS_UPDATE_EXIT DISAS_TARGET_1
|
|
/* These instructions trap after executing, so the A32/T32 decoder must
|
|
* defer them until after the conditional execution state has been updated.
|
|
* WFI also needs special handling when single-stepping.
|
|
*/
|
|
#define DISAS_WFI DISAS_TARGET_2
|
|
#define DISAS_SWI DISAS_TARGET_3
|
|
/* WFE */
|
|
#define DISAS_WFE DISAS_TARGET_4
|
|
#define DISAS_HVC DISAS_TARGET_5
|
|
#define DISAS_SMC DISAS_TARGET_6
|
|
#define DISAS_YIELD DISAS_TARGET_7
|
|
/* M profile branch which might be an exception return (and so needs
|
|
* custom end-of-TB code)
|
|
*/
|
|
#define DISAS_BX_EXCRET DISAS_TARGET_8
|
|
/*
|
|
* For instructions which want an immediate exit to the main loop, as opposed
|
|
* to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this
|
|
* doesn't write the PC on exiting the translation loop so you need to ensure
|
|
* something (gen_a64_set_pc_im or runtime helper) has done so before we reach
|
|
* return from cpu_tb_exec.
|
|
*/
|
|
#define DISAS_EXIT DISAS_TARGET_9
|
|
/* CPU state was modified dynamically; no need to exit, but do not chain. */
|
|
#define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10
|
|
|
|
#ifdef TARGET_AARCH64
|
|
void a64_translate_init(struct uc_struct *uc);
|
|
void gen_a64_set_pc_im(DisasContext *s, uint64_t val);
|
|
extern const TranslatorOps aarch64_translator_ops;
|
|
#else
|
|
static inline void a64_translate_init(struct uc_struct *uc)
|
|
{
|
|
}
|
|
|
|
static inline void gen_a64_set_pc_im(DisasContext *s, uint64_t val)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void arm_test_cc(DisasContext *s, DisasCompare *cmp, int cc);
|
|
void arm_free_cc(DisasContext *s, DisasCompare *cmp);
|
|
void arm_jump_cc(DisasContext *s, DisasCompare *cmp, TCGLabel *label);
|
|
void arm_gen_test_cc(DisasContext *s, int cc, TCGLabel *label);
|
|
|
|
/* Return state of Alternate Half-precision flag, caller frees result */
|
|
static inline TCGv_i32 get_ahp_flag(DisasContext *s)
|
|
{
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
TCGv_i32 ret = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
tcg_gen_ld_i32(tcg_ctx, ret, tcg_ctx->cpu_env,
|
|
offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
|
|
tcg_gen_extract_i32(tcg_ctx, ret, ret, 26, 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Set bits within PSTATE. */
|
|
static inline void set_pstate_bits(DisasContext *s, uint32_t bits)
|
|
{
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
TCGv_i32 p = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
|
|
|
|
tcg_gen_ld_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate));
|
|
tcg_gen_ori_i32(tcg_ctx, p, p, bits);
|
|
tcg_gen_st_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate));
|
|
tcg_temp_free_i32(tcg_ctx, p);
|
|
}
|
|
|
|
/* Clear bits within PSTATE. */
|
|
static inline void clear_pstate_bits(DisasContext *s, uint32_t bits)
|
|
{
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
TCGv_i32 p = tcg_temp_new_i32(tcg_ctx);
|
|
|
|
tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
|
|
|
|
tcg_gen_ld_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate));
|
|
tcg_gen_andi_i32(tcg_ctx, p, p, ~bits);
|
|
tcg_gen_st_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate));
|
|
tcg_temp_free_i32(tcg_ctx, p);
|
|
}
|
|
|
|
/* If the singlestep state is Active-not-pending, advance to Active-pending. */
|
|
static inline void gen_ss_advance(DisasContext *s)
|
|
{
|
|
if (s->ss_active) {
|
|
s->pstate_ss = 0;
|
|
clear_pstate_bits(s, PSTATE_SS);
|
|
}
|
|
}
|
|
|
|
static inline void gen_exception(DisasContext *s, int excp, uint32_t syndrome,
|
|
uint32_t target_el)
|
|
{
|
|
TCGContext *tcg_ctx = s->uc->tcg_ctx;
|
|
TCGv_i32 tcg_excp = tcg_const_i32(tcg_ctx, excp);
|
|
TCGv_i32 tcg_syn = tcg_const_i32(tcg_ctx, syndrome);
|
|
TCGv_i32 tcg_el = tcg_const_i32(tcg_ctx, target_el);
|
|
|
|
gen_helper_exception_with_syndrome(tcg_ctx, tcg_ctx->cpu_env, tcg_excp,
|
|
tcg_syn, tcg_el);
|
|
|
|
tcg_temp_free_i32(tcg_ctx, tcg_el);
|
|
tcg_temp_free_i32(tcg_ctx, tcg_syn);
|
|
tcg_temp_free_i32(tcg_ctx, tcg_excp);
|
|
}
|
|
|
|
/* Generate an architectural singlestep exception */
|
|
static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
|
|
{
|
|
bool same_el = (s->debug_target_el == s->current_el);
|
|
|
|
/*
|
|
* If singlestep is targeting a lower EL than the current one,
|
|
* then s->ss_active must be false and we can never get here.
|
|
*/
|
|
assert(s->debug_target_el >= s->current_el);
|
|
|
|
gen_exception(s, EXCP_UDEF, syn_swstep(same_el, isv, ex), s->debug_target_el);
|
|
}
|
|
|
|
/*
|
|
* Given a VFP floating point constant encoded into an 8 bit immediate in an
|
|
* instruction, expand it to the actual constant value of the specified
|
|
* size, as per the VFPExpandImm() pseudocode in the Arm ARM.
|
|
*/
|
|
uint64_t vfp_expand_imm(int size, uint8_t imm8);
|
|
|
|
/* Vector operations shared between ARM and AArch64. */
|
|
void gen_gvec_ceq0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_clt0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_cgt0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_cle0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_cge0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_gvec_mla(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_mls(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_gvec_cmtst(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_sshl(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_ushl(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_cmtst_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
|
|
void gen_ushl_i32(TCGContext* tcg_ctx, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
|
|
void gen_sshl_i32(TCGContext* tcg_ctx, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
|
|
void gen_ushl_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
|
|
void gen_sshl_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
|
|
|
|
void gen_gvec_uqadd_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_sqadd_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_uqsub_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_sqsub_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_gvec_ssra(TCGContext* tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_usra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_gvec_srshr(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_urshr(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_srsra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_ursra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_gvec_sri(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_sli(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_gvec_sqrdmlah_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_sqrdmlsh_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_gvec_sabd(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_uabd(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
void gen_gvec_saba(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
void gen_gvec_uaba(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
|
|
|
|
/*
|
|
* Forward to the isar_feature_* tests given a DisasContext pointer.
|
|
*/
|
|
#define dc_isar_feature(name, ctx) \
|
|
({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
|
|
|
|
/* Note that the gvec expanders operate on offsets + sizes. */
|
|
typedef void GVecGen2Fn(TCGContext *, unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
|
|
typedef void GVecGen2iFn(TCGContext *, unsigned, uint32_t, uint32_t, int64_t,
|
|
uint32_t, uint32_t);
|
|
typedef void GVecGen3Fn(TCGContext *, unsigned, uint32_t, uint32_t,
|
|
uint32_t, uint32_t, uint32_t);
|
|
typedef void GVecGen4Fn(TCGContext *, unsigned, uint32_t, uint32_t, uint32_t,
|
|
uint32_t, uint32_t, uint32_t);
|
|
|
|
/* Function prototype for gen_ functions for calling Neon helpers */
|
|
typedef void NeonGenOneOpFn(TCGContext *t, TCGv_i32, TCGv_i32);
|
|
typedef void NeonGenOneOpEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i32);
|
|
typedef void NeonGenTwoOpFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_i32);
|
|
typedef void NeonGenTwoOpEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
|
|
typedef void NeonGenTwo64OpFn(TCGContext *t, TCGv_i64, TCGv_i64, TCGv_i64);
|
|
typedef void NeonGenTwo64OpEnvFn(TCGContext *t, TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
|
|
typedef void NeonGenNarrowFn(TCGContext *t, TCGv_i32, TCGv_i64);
|
|
typedef void NeonGenNarrowEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i64);
|
|
typedef void NeonGenWidenFn(TCGContext *t, TCGv_i64, TCGv_i32);
|
|
typedef void NeonGenTwoOpWidenFn(TCGContext *t, TCGv_i64, TCGv_i32, TCGv_i32);
|
|
typedef void NeonGenOneSingleOpFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_ptr);
|
|
typedef void NeonGenTwoSingleOpFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
|
|
typedef void NeonGenTwoDoubleOpFn(TCGContext *t, TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
|
|
typedef void NeonGenOne64OpFn(TCGContext *t, TCGv_i64, TCGv_i64);
|
|
typedef void CryptoTwoOpFn(TCGContext *, TCGv_ptr, TCGv_ptr);
|
|
typedef void CryptoThreeOpIntFn(TCGContext *, TCGv_ptr, TCGv_ptr, TCGv_i32);
|
|
typedef void CryptoThreeOpFn(TCGContext *, TCGv_ptr, TCGv_ptr, TCGv_ptr);
|
|
typedef void AtomicThreeOpFn(TCGContext *, TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
|
|
|
|
#endif /* TARGET_ARM_TRANSLATE_H */
|