unicorn/qemu/target-arm/unicorn_arm.c
Peter Crosthwaite 65f70d7a08
target-arm: Add registers for PMSAv7
Define the arm CP registers for PMSAv7 and their accessor functions.
RGNR serves as a shared index that indexes into arrays storing the
DRBAR, DRSR and DRACR registers. DRBAR and friends have to be VMSDd
separately from the CP interface using a new PMSA specific VMSD
subsection.

Backports commit 6cb0b013a1fa421cdfb83257cd33f855cc90649a from qemu
2018-02-17 15:22:43 -05:00

203 lines
6.4 KiB
C

/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
#include "hw/boards.h"
#include "hw/arm/arm.h"
#include "sysemu/cpus.h"
#include "unicorn.h"
#include "cpu.h"
#include "unicorn_common.h"
#include "uc_priv.h"
const int ARM_REGS_STORAGE_SIZE = offsetof(CPUARMState, tlb_table);
static void arm_set_pc(struct uc_struct *uc, uint64_t address)
{
((CPUARMState *)uc->current_cpu->env_ptr)->pc = address;
((CPUARMState *)uc->current_cpu->env_ptr)->regs[15] = address;
}
void arm_release(void* ctx);
void arm_release(void* ctx)
{
TCGContext *s = (TCGContext *) ctx;
struct uc_struct* uc = s->uc;
ARMCPU* cpu = (ARMCPU*) uc->cpu;
CPUArchState *env = &cpu->env;
g_free(s->tb_ctx.tbs);
g_free(cpu->cpreg_indexes);
g_free(cpu->cpreg_values);
g_free(cpu->cpreg_vmstate_indexes);
g_free(cpu->cpreg_vmstate_values);
g_free(env->pmsav7.drbar);
g_free(env->pmsav7.drsr);
g_free(env->pmsav7.dracr);
release_common(ctx);
}
void arm_reg_reset(struct uc_struct *uc)
{
CPUArchState *env = uc->cpu->env_ptr;
memset(env->regs, 0, sizeof(env->regs));
env->pc = 0;
}
int arm_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count)
{
CPUState *mycpu;
int i;
mycpu = uc->cpu;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
void *value = vals[i];
if (regid >= UC_ARM_REG_R0 && regid <= UC_ARM_REG_R12)
*(int32_t *)value = ARM_CPU(uc, mycpu)->env.regs[regid - UC_ARM_REG_R0];
else if (regid >= UC_ARM_REG_D0 && regid <= UC_ARM_REG_D31)
*(float64 *)value = ARM_CPU(uc, mycpu)->env.vfp.regs[regid - UC_ARM_REG_D0];
else {
switch(regid) {
case UC_ARM_REG_APSR:
*(int32_t *)value = cpsr_read(&ARM_CPU(uc, mycpu)->env) & CPSR_NZCV;
break;
case UC_ARM_REG_CPSR:
*(int32_t *)value = cpsr_read(&ARM_CPU(uc, mycpu)->env);
break;
//case UC_ARM_REG_SP:
case UC_ARM_REG_R13:
*(int32_t *)value = ARM_CPU(uc, mycpu)->env.regs[13];
break;
//case UC_ARM_REG_LR:
case UC_ARM_REG_R14:
*(int32_t *)value = ARM_CPU(uc, mycpu)->env.regs[14];
break;
//case UC_ARM_REG_PC:
case UC_ARM_REG_R15:
*(int32_t *)value = ARM_CPU(uc, mycpu)->env.regs[15];
break;
case UC_ARM_REG_C1_C0_2:
*(int32_t *)value = ARM_CPU(uc, mycpu)->env.cp15.cpacr_el1;
break;
case UC_ARM_REG_C13_C0_3:
*(int32_t *)value = ARM_CPU(uc, mycpu)->env.cp15.tpidrro_el[0];
break;
case UC_ARM_REG_FPEXC:
*(int32_t *)value = ARM_CPU(uc, mycpu)->env.vfp.xregs[ARM_VFP_FPEXC];
break;
}
}
}
return 0;
}
int arm_reg_write(struct uc_struct *uc, unsigned int *regs, void* const* vals, int count)
{
CPUState *mycpu = uc->cpu;
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
const void *value = vals[i];
if (regid >= UC_ARM_REG_R0 && regid <= UC_ARM_REG_R12)
ARM_CPU(uc, mycpu)->env.regs[regid - UC_ARM_REG_R0] = *(uint32_t *)value;
else if (regid >= UC_ARM_REG_D0 && regid <= UC_ARM_REG_D31)
ARM_CPU(uc, mycpu)->env.vfp.regs[regid - UC_ARM_REG_D0] = *(float64 *)value;
else {
switch(regid) {
case UC_ARM_REG_APSR:
cpsr_write(&ARM_CPU(uc, mycpu)->env, *(uint32_t *)value, CPSR_NZCV);
break;
case UC_ARM_REG_CPSR:
cpsr_write(&ARM_CPU(uc, mycpu)->env, *(uint32_t *)value, ~0);
break;
//case UC_ARM_REG_SP:
case UC_ARM_REG_R13:
ARM_CPU(uc, mycpu)->env.regs[13] = *(uint32_t *)value;
break;
//case UC_ARM_REG_LR:
case UC_ARM_REG_R14:
ARM_CPU(uc, mycpu)->env.regs[14] = *(uint32_t *)value;
break;
//case UC_ARM_REG_PC:
case UC_ARM_REG_R15:
ARM_CPU(uc, mycpu)->env.pc = (*(uint32_t *)value & ~1);
ARM_CPU(uc, mycpu)->env.thumb = (*(uint32_t *)value & 1);
ARM_CPU(uc, mycpu)->env.uc->thumb = (*(uint32_t *)value & 1);
ARM_CPU(uc, mycpu)->env.regs[15] = (*(uint32_t *)value & ~1);
// force to quit execution and flush TB
uc->quit_request = true;
uc_emu_stop(uc);
break;
case UC_ARM_REG_C1_C0_2:
ARM_CPU(uc, mycpu)->env.cp15.cpacr_el1 = *(int32_t *)value;
break;
case UC_ARM_REG_C13_C0_3:
ARM_CPU(uc, mycpu)->env.cp15.tpidrro_el[0] = *(int32_t *)value;
break;
case UC_ARM_REG_FPEXC:
ARM_CPU(uc, mycpu)->env.vfp.xregs[ARM_VFP_FPEXC] = *(int32_t *)value;
break;
}
}
}
return 0;
}
static bool arm_stop_interrupt(int intno)
{
switch(intno) {
default:
return false;
case EXCP_UDEF:
case EXCP_YIELD:
return true;
}
}
static uc_err arm_query(struct uc_struct *uc, uc_query_type type, size_t *result)
{
CPUState *mycpu = uc->cpu;
uint32_t mode;
switch(type) {
case UC_QUERY_MODE:
// zero out ARM/THUMB mode
mode = uc->mode & ~(UC_MODE_ARM | UC_MODE_THUMB);
// THUMB mode or ARM MOde
mode += ((ARM_CPU(uc, mycpu)->env.thumb != 0)? UC_MODE_THUMB : UC_MODE_ARM);
*result = mode;
return UC_ERR_OK;
default:
return UC_ERR_ARG;
}
}
#ifdef TARGET_WORDS_BIGENDIAN
void armeb_uc_init(struct uc_struct* uc)
#else
void arm_uc_init(struct uc_struct* uc)
#endif
{
register_accel_types(uc);
arm_cpu_register_types(uc);
tosa_machine_init(uc);
uc->reg_read = arm_reg_read;
uc->reg_write = arm_reg_write;
uc->reg_reset = arm_reg_reset;
uc->set_pc = arm_set_pc;
uc->stop_interrupt = arm_stop_interrupt;
uc->release = arm_release;
uc->query = arm_query;
uc_common_init(uc);
}