mirror of
				https://github.com/yuzu-emu/unicorn.git
				synced 2025-11-04 12:15:06 +00:00 
			
		
		
		
	There are functions tlb_fill(), cpu_unaligned_access() and do_unaligned_access() that are called with access type and mmu index arguments. But these arguments are named 'is_write' and 'is_user' in their declarations. The patches fix the arguments to avoid a confusion. Backports commit b35399bb4e9968296a12303b00f9f2066470e987 from qemu
		
			
				
	
	
		
			1333 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1333 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  ARM helper routines
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2005-2007 CodeSourcery, LLC
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "exec/helper-proto.h"
 | 
						|
#include "internals.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "exec/cpu_ldst.h"
 | 
						|
 | 
						|
#define SIGNBIT (uint32_t)0x80000000
 | 
						|
#define SIGNBIT64 ((uint64_t)1 << 63)
 | 
						|
 | 
						|
static void raise_exception(CPUARMState *env, uint32_t excp,
 | 
						|
                            uint32_t syndrome, uint32_t target_el)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(arm_env_get_cpu(env));
 | 
						|
 | 
						|
    assert(!excp_is_internal(excp));
 | 
						|
    cs->exception_index = excp;
 | 
						|
    env->exception.syndrome = syndrome;
 | 
						|
    env->exception.target_el = target_el;
 | 
						|
    cpu_loop_exit(cs);
 | 
						|
}
 | 
						|
 | 
						|
static int exception_target_el(CPUARMState *env)
 | 
						|
{
 | 
						|
    int target_el = MAX(1, arm_current_el(env));
 | 
						|
 | 
						|
    /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
 | 
						|
     * to EL3 in this case.
 | 
						|
     */
 | 
						|
    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
 | 
						|
        target_el = 3;
 | 
						|
    }
 | 
						|
 | 
						|
    return target_el;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
 | 
						|
                          uint32_t rn, uint32_t maxindex)
 | 
						|
{
 | 
						|
    uint32_t val;
 | 
						|
    uint32_t tmp;
 | 
						|
    int index;
 | 
						|
    int shift;
 | 
						|
    uint64_t *table;
 | 
						|
    table = (uint64_t *)&env->vfp.regs[rn];
 | 
						|
    val = 0;
 | 
						|
    for (shift = 0; shift < 32; shift += 8) {
 | 
						|
        index = (ireg >> shift) & 0xff;
 | 
						|
        if (index < maxindex) {
 | 
						|
            tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
 | 
						|
            val |= tmp << shift;
 | 
						|
        } else {
 | 
						|
            val |= def & (0xff << shift);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
 | 
						|
                                            unsigned int target_el,
 | 
						|
                                            bool same_el,
 | 
						|
                                            bool s1ptw, bool is_write,
 | 
						|
                                            int fsc)
 | 
						|
{
 | 
						|
    uint32_t syn;
 | 
						|
 | 
						|
    /* ISV is only set for data aborts routed to EL2 and
 | 
						|
     * never for stage-1 page table walks faulting on stage 2.
 | 
						|
     *
 | 
						|
     * Furthermore, ISV is only set for certain kinds of load/stores.
 | 
						|
     * If the template syndrome does not have ISV set, we should leave
 | 
						|
     * it cleared.
 | 
						|
     *
 | 
						|
     * See ARMv8 specs, D7-1974:
 | 
						|
     * ISS encoding for an exception from a Data Abort, the
 | 
						|
     * ISV field.
 | 
						|
     */
 | 
						|
    if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
 | 
						|
        syn = syn_data_abort_no_iss(same_el,
 | 
						|
                                    0, 0, s1ptw, is_write, fsc);
 | 
						|
    } else {
 | 
						|
        /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
 | 
						|
         * syndrome created at translation time.
 | 
						|
         * Now we create the runtime syndrome with the remaining fields.
 | 
						|
         */
 | 
						|
        syn = syn_data_abort_with_iss(same_el,
 | 
						|
                                      0, 0, 0, 0, 0,
 | 
						|
                                      0, 0, s1ptw, is_write, fsc,
 | 
						|
                                      false);
 | 
						|
        /* Merge the runtime syndrome with the template syndrome.  */
 | 
						|
        syn |= template_syn;
 | 
						|
    }
 | 
						|
    return syn;
 | 
						|
}
 | 
						|
 | 
						|
/* try to fill the TLB and return an exception if error. If retaddr is
 | 
						|
 * NULL, it means that the function was called in C code (i.e. not
 | 
						|
 * from generated code or from helper.c)
 | 
						|
 */
 | 
						|
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
 | 
						|
              int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    bool ret;
 | 
						|
    uint32_t fsr = 0;
 | 
						|
    ARMMMUFaultInfo fi = {0};
 | 
						|
 | 
						|
    ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi);
 | 
						|
    if (unlikely(ret)) {
 | 
						|
        ARMCPU *cpu = ARM_CPU(cs->uc, cs);
 | 
						|
        CPUARMState *env = &cpu->env;
 | 
						|
        uint32_t syn, exc;
 | 
						|
        unsigned int target_el;
 | 
						|
        bool same_el;
 | 
						|
 | 
						|
        if (retaddr) {
 | 
						|
            /* now we have a real cpu fault */
 | 
						|
            cpu_restore_state(cs, retaddr);
 | 
						|
        }
 | 
						|
 | 
						|
        target_el = exception_target_el(env);
 | 
						|
        if (fi.stage2) {
 | 
						|
            target_el = 2;
 | 
						|
            env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
 | 
						|
        }
 | 
						|
        same_el = arm_current_el(env) == target_el;
 | 
						|
        /* AArch64 syndrome does not have an LPAE bit */
 | 
						|
        syn = fsr & ~(1 << 9);
 | 
						|
 | 
						|
        /* For insn and data aborts we assume there is no instruction syndrome
 | 
						|
         * information; this is always true for exceptions reported to EL1.
 | 
						|
         */
 | 
						|
        if (access_type == MMU_INST_FETCH) {
 | 
						|
            syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
 | 
						|
            exc = EXCP_PREFETCH_ABORT;
 | 
						|
        } else {
 | 
						|
            syn = merge_syn_data_abort(env->exception.syndrome, target_el,
 | 
						|
                                       same_el, fi.s1ptw,
 | 
						|
                                       access_type == MMU_DATA_STORE, syn);
 | 
						|
            if (access_type == MMU_DATA_STORE
 | 
						|
                && arm_feature(env, ARM_FEATURE_V6)) {
 | 
						|
                fsr |= (1 << 11);
 | 
						|
            }
 | 
						|
            exc = EXCP_DATA_ABORT;
 | 
						|
        }
 | 
						|
 | 
						|
        env->exception.vaddress = addr;
 | 
						|
        env->exception.fsr = fsr;
 | 
						|
        raise_exception(env, exc, syn, target_el);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Raise a data fault alignment exception for the specified virtual address */
 | 
						|
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 | 
						|
                                 MMUAccessType access_type,
 | 
						|
                                 int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs->uc, cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    int target_el;
 | 
						|
    bool same_el;
 | 
						|
    uint32_t syn;
 | 
						|
 | 
						|
    if (retaddr) {
 | 
						|
        /* now we have a real cpu fault */
 | 
						|
        cpu_restore_state(cs, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    target_el = exception_target_el(env);
 | 
						|
    same_el = (arm_current_el(env) == target_el);
 | 
						|
 | 
						|
    env->exception.vaddress = vaddr;
 | 
						|
 | 
						|
    /* the DFSR for an alignment fault depends on whether we're using
 | 
						|
     * the LPAE long descriptor format, or the short descriptor format
 | 
						|
     */
 | 
						|
    if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
 | 
						|
        env->exception.fsr = 0x21;
 | 
						|
    } else {
 | 
						|
        env->exception.fsr = 0x1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) {
 | 
						|
        env->exception.fsr |= (1 << 11);
 | 
						|
    }
 | 
						|
 | 
						|
    syn = merge_syn_data_abort(env->exception.syndrome, target_el,
 | 
						|
                               same_el, 0, access_type == MMU_DATA_STORE,
 | 
						|
                               0x21);
 | 
						|
    raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* !defined(CONFIG_USER_ONLY) */
 | 
						|
 | 
						|
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
 | 
						|
{
 | 
						|
    uint32_t res = a + b;
 | 
						|
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
 | 
						|
        env->QF = 1;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | 
						|
{
 | 
						|
    uint32_t res = a + b;
 | 
						|
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
 | 
						|
        env->QF = 1;
 | 
						|
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | 
						|
{
 | 
						|
    uint32_t res = a - b;
 | 
						|
    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
 | 
						|
        env->QF = 1;
 | 
						|
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
 | 
						|
{
 | 
						|
    uint32_t res;
 | 
						|
    if (val >= 0x40000000) {
 | 
						|
        res = ~SIGNBIT;
 | 
						|
        env->QF = 1;
 | 
						|
    } else if (val <= (int32_t)0xc0000000) {
 | 
						|
        res = SIGNBIT;
 | 
						|
        env->QF = 1;
 | 
						|
    } else {
 | 
						|
        res = val << 1;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | 
						|
{
 | 
						|
    uint32_t res = a + b;
 | 
						|
    if (res < a) {
 | 
						|
        env->QF = 1;
 | 
						|
        res = ~0;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | 
						|
{
 | 
						|
    uint32_t res = a - b;
 | 
						|
    if (res > a) {
 | 
						|
        env->QF = 1;
 | 
						|
        res = 0;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Signed saturation.  */
 | 
						|
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
 | 
						|
{
 | 
						|
    int32_t top;
 | 
						|
    uint32_t mask;
 | 
						|
 | 
						|
    top = val >> shift;
 | 
						|
    mask = (1u << shift) - 1;
 | 
						|
    if (top > 0) {
 | 
						|
        env->QF = 1;
 | 
						|
        return mask;
 | 
						|
    } else if (top < -1) {
 | 
						|
        env->QF = 1;
 | 
						|
        return ~mask;
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/* Unsigned saturation.  */
 | 
						|
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
 | 
						|
{
 | 
						|
    uint32_t max;
 | 
						|
 | 
						|
    max = (1u << shift) - 1;
 | 
						|
    if (val < 0) {
 | 
						|
        env->QF = 1;
 | 
						|
        return 0;
 | 
						|
    } else if (val > max) {
 | 
						|
        env->QF = 1;
 | 
						|
        return max;
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/* Signed saturate.  */
 | 
						|
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
 | 
						|
{
 | 
						|
    return do_ssat(env, x, shift);
 | 
						|
}
 | 
						|
 | 
						|
/* Dual halfword signed saturate.  */
 | 
						|
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
 | 
						|
{
 | 
						|
    uint32_t res;
 | 
						|
 | 
						|
    res = (uint16_t)do_ssat(env, (int16_t)x, shift);
 | 
						|
    res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Unsigned saturate.  */
 | 
						|
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
 | 
						|
{
 | 
						|
    return do_usat(env, x, shift);
 | 
						|
}
 | 
						|
 | 
						|
/* Dual halfword unsigned saturate.  */
 | 
						|
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
 | 
						|
{
 | 
						|
    uint32_t res;
 | 
						|
 | 
						|
    res = (uint16_t)do_usat(env, (int16_t)x, shift);
 | 
						|
    res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(setend)(CPUARMState *env)
 | 
						|
{
 | 
						|
    env->uncached_cpsr ^= CPSR_E;
 | 
						|
}
 | 
						|
 | 
						|
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
 | 
						|
 * The function returns the target EL (1-3) if the instruction is to be trapped;
 | 
						|
 * otherwise it returns 0 indicating it is not trapped.
 | 
						|
 */
 | 
						|
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
 | 
						|
{
 | 
						|
    int cur_el = arm_current_el(env);
 | 
						|
    uint64_t mask;
 | 
						|
 | 
						|
    /* If we are currently in EL0 then we need to check if SCTLR is set up for
 | 
						|
     * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
 | 
						|
     */
 | 
						|
    if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        int target_el;
 | 
						|
 | 
						|
        mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
 | 
						|
        if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
 | 
						|
            /* Secure EL0 and Secure PL1 is at EL3 */
 | 
						|
            target_el = 3;
 | 
						|
        } else {
 | 
						|
            target_el = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!(env->cp15.sctlr_el[target_el] & mask)) {
 | 
						|
            return target_el;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
 | 
						|
     * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
 | 
						|
     * bits will be zero indicating no trap.
 | 
						|
     */
 | 
						|
    if (cur_el < 2 && !arm_is_secure(env)) {
 | 
						|
        mask = (is_wfe) ? HCR_TWE : HCR_TWI;
 | 
						|
        if (env->cp15.hcr_el2 & mask) {
 | 
						|
            return 2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
 | 
						|
    if (cur_el < 3) {
 | 
						|
        mask = (is_wfe) ? SCR_TWE : SCR_TWI;
 | 
						|
        if (env->cp15.scr_el3 & mask) {
 | 
						|
            return 3;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wfi)(CPUARMState *env)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(arm_env_get_cpu(env));
 | 
						|
    int target_el = check_wfx_trap(env, false);
 | 
						|
 | 
						|
    if (cpu_has_work(cs)) {
 | 
						|
        /* Don't bother to go into our "low power state" if
 | 
						|
         * we would just wake up immediately.
 | 
						|
         */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (target_el) {
 | 
						|
        env->pc -= 4;
 | 
						|
        raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
 | 
						|
    }
 | 
						|
 | 
						|
    cs->exception_index = EXCP_HLT;
 | 
						|
    cs->halted = 1;
 | 
						|
    cpu_loop_exit(cs);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wfe)(CPUARMState *env)
 | 
						|
{
 | 
						|
    /* This is a hint instruction that is semantically different
 | 
						|
     * from YIELD even though we currently implement it identically.
 | 
						|
     * Don't actually halt the CPU, just yield back to top
 | 
						|
     * level loop. This is not going into a "low power state"
 | 
						|
     * (ie halting until some event occurs), so we never take
 | 
						|
     * a configurable trap to a different exception level.
 | 
						|
     */
 | 
						|
    HELPER(yield)(env);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(yield)(CPUARMState *env)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
 | 
						|
    /* This is a non-trappable hint instruction that generally indicates
 | 
						|
     * that the guest is currently busy-looping. Yield control back to the
 | 
						|
     * top level loop so that a more deserving VCPU has a chance to run.
 | 
						|
     */
 | 
						|
    cs->exception_index = EXCP_YIELD;
 | 
						|
    cpu_loop_exit(cs);
 | 
						|
}
 | 
						|
 | 
						|
/* Raise an internal-to-QEMU exception. This is limited to only
 | 
						|
 * those EXCP values which are special cases for QEMU to interrupt
 | 
						|
 * execution and not to be used for exceptions which are passed to
 | 
						|
 * the guest (those must all have syndrome information and thus should
 | 
						|
 * use exception_with_syndrome).
 | 
						|
 */
 | 
						|
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(arm_env_get_cpu(env));
 | 
						|
 | 
						|
    assert(excp_is_internal(excp));
 | 
						|
    cs->exception_index = excp;
 | 
						|
    cpu_loop_exit(cs);
 | 
						|
}
 | 
						|
 | 
						|
/* Raise an exception with the specified syndrome register value */
 | 
						|
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
 | 
						|
                                     uint32_t syndrome, uint32_t target_el)
 | 
						|
{
 | 
						|
    raise_exception(env, excp, syndrome, target_el);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(cpsr_read)(CPUARMState *env)
 | 
						|
{
 | 
						|
    return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
 | 
						|
{
 | 
						|
    cpsr_write(env, val, mask, CPSRWriteByInstr);
 | 
						|
}
 | 
						|
 | 
						|
/* Write the CPSR for a 32-bit exception return */
 | 
						|
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
 | 
						|
{
 | 
						|
    cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
 | 
						|
 | 
						|
    arm_call_el_change_hook(arm_env_get_cpu(env));
 | 
						|
}
 | 
						|
 | 
						|
/* Access to user mode registers from privileged modes.  */
 | 
						|
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
 | 
						|
{
 | 
						|
    uint32_t val;
 | 
						|
 | 
						|
    if (regno == 13) {
 | 
						|
        val = env->banked_r13[BANK_USRSYS];
 | 
						|
    } else if (regno == 14) {
 | 
						|
        val = env->banked_r14[BANK_USRSYS];
 | 
						|
    } else if (regno >= 8
 | 
						|
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
 | 
						|
        val = env->usr_regs[regno - 8];
 | 
						|
    } else {
 | 
						|
        val = env->regs[regno];
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
 | 
						|
{
 | 
						|
    if (regno == 13) {
 | 
						|
        env->banked_r13[BANK_USRSYS] = val;
 | 
						|
    } else if (regno == 14) {
 | 
						|
        env->banked_r14[BANK_USRSYS] = val;
 | 
						|
    } else if (regno >= 8
 | 
						|
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
 | 
						|
        env->usr_regs[regno - 8] = val;
 | 
						|
    } else {
 | 
						|
        env->regs[regno] = val;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
 | 
						|
{
 | 
						|
    if ((env->uncached_cpsr & CPSR_M) == mode) {
 | 
						|
        env->regs[13] = val;
 | 
						|
    } else {
 | 
						|
        env->banked_r13[bank_number(mode)] = val;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
 | 
						|
{
 | 
						|
    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
 | 
						|
        /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
 | 
						|
         * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
 | 
						|
         */
 | 
						|
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | 
						|
                        exception_target_el(env));
 | 
						|
    }
 | 
						|
 | 
						|
    if ((env->uncached_cpsr & CPSR_M) == mode) {
 | 
						|
        return env->regs[13];
 | 
						|
    } else {
 | 
						|
        return env->banked_r13[bank_number(mode)];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
 | 
						|
                                      uint32_t regno)
 | 
						|
{
 | 
						|
    /* Raise an exception if the requested access is one of the UNPREDICTABLE
 | 
						|
     * cases; otherwise return. This broadly corresponds to the pseudocode
 | 
						|
     * BankedRegisterAccessValid() and SPSRAccessValid(),
 | 
						|
     * except that we have already handled some cases at translate time.
 | 
						|
     */
 | 
						|
    int curmode = env->uncached_cpsr & CPSR_M;
 | 
						|
 | 
						|
    if (curmode == tgtmode) {
 | 
						|
        goto undef;
 | 
						|
    }
 | 
						|
 | 
						|
    if (tgtmode == ARM_CPU_MODE_USR) {
 | 
						|
        switch (regno) {
 | 
						|
        case 8 ... 12:
 | 
						|
            if (curmode != ARM_CPU_MODE_FIQ) {
 | 
						|
                goto undef;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 13:
 | 
						|
            if (curmode == ARM_CPU_MODE_SYS) {
 | 
						|
                goto undef;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 14:
 | 
						|
            if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
 | 
						|
                goto undef;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (tgtmode == ARM_CPU_MODE_HYP) {
 | 
						|
        switch (regno) {
 | 
						|
        case 17: /* ELR_Hyp */
 | 
						|
            if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
 | 
						|
                goto undef;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            if (curmode != ARM_CPU_MODE_MON) {
 | 
						|
                goto undef;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
undef:
 | 
						|
    raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | 
						|
                    exception_target_el(env));
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
 | 
						|
                        uint32_t regno)
 | 
						|
{
 | 
						|
    msr_mrs_banked_exc_checks(env, tgtmode, regno);
 | 
						|
 | 
						|
    switch (regno) {
 | 
						|
    case 16: /* SPSRs */
 | 
						|
        env->banked_spsr[bank_number(tgtmode)] = value;
 | 
						|
        break;
 | 
						|
    case 17: /* ELR_Hyp */
 | 
						|
        env->elr_el[2] = value;
 | 
						|
        break;
 | 
						|
    case 13:
 | 
						|
        env->banked_r13[bank_number(tgtmode)] = value;
 | 
						|
        break;
 | 
						|
    case 14:
 | 
						|
        env->banked_r14[bank_number(tgtmode)] = value;
 | 
						|
        break;
 | 
						|
    case 8:
 | 
						|
    case 9:
 | 
						|
    case 10:
 | 
						|
    case 11:
 | 
						|
    case 12:
 | 
						|
        switch (tgtmode) {
 | 
						|
        case ARM_CPU_MODE_USR:
 | 
						|
            env->usr_regs[regno - 8] = value;
 | 
						|
            break;
 | 
						|
        case ARM_CPU_MODE_FIQ:
 | 
						|
            env->fiq_regs[regno - 8] = value;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
 | 
						|
{
 | 
						|
    msr_mrs_banked_exc_checks(env, tgtmode, regno);
 | 
						|
 | 
						|
    switch (regno) {
 | 
						|
    case 16: /* SPSRs */
 | 
						|
        return env->banked_spsr[bank_number(tgtmode)];
 | 
						|
    case 17: /* ELR_Hyp */
 | 
						|
        return env->elr_el[2];
 | 
						|
    case 13:
 | 
						|
        return env->banked_r13[bank_number(tgtmode)];
 | 
						|
    case 14:
 | 
						|
        return env->banked_r14[bank_number(tgtmode)];
 | 
						|
    case 8:
 | 
						|
    case 9:
 | 
						|
    case 10:
 | 
						|
    case 11:
 | 
						|
    case 12:
 | 
						|
        switch (tgtmode) {
 | 
						|
        case ARM_CPU_MODE_USR:
 | 
						|
            return env->usr_regs[regno - 8];
 | 
						|
        case ARM_CPU_MODE_FIQ:
 | 
						|
            return env->fiq_regs[regno - 8];
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
 | 
						|
                                 uint32_t isread)
 | 
						|
{
 | 
						|
    const ARMCPRegInfo *ri = rip;
 | 
						|
    int target_el;
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
 | 
						|
        && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
 | 
						|
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ri->accessfn) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (ri->accessfn(env, ri, isread)) {
 | 
						|
    case CP_ACCESS_OK:
 | 
						|
        return;
 | 
						|
    case CP_ACCESS_TRAP:
 | 
						|
        target_el = exception_target_el(env);
 | 
						|
        break;
 | 
						|
    case CP_ACCESS_TRAP_EL2:
 | 
						|
        /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
 | 
						|
         * a bug in the access function.
 | 
						|
         */
 | 
						|
        assert(!arm_is_secure(env) && arm_current_el(env) != 3);
 | 
						|
        target_el = 2;
 | 
						|
        break;
 | 
						|
    case CP_ACCESS_TRAP_EL3:
 | 
						|
        target_el = 3;
 | 
						|
        break;
 | 
						|
    case CP_ACCESS_TRAP_UNCATEGORIZED:
 | 
						|
        target_el = exception_target_el(env);
 | 
						|
        syndrome = syn_uncategorized();
 | 
						|
        break;
 | 
						|
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
 | 
						|
        target_el = 2;
 | 
						|
        syndrome = syn_uncategorized();
 | 
						|
        break;
 | 
						|
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
 | 
						|
        target_el = 3;
 | 
						|
        syndrome = syn_uncategorized();
 | 
						|
        break;
 | 
						|
    case CP_ACCESS_TRAP_FP_EL2:
 | 
						|
        target_el = 2;
 | 
						|
        /* Since we are an implementation that takes exceptions on a trapped
 | 
						|
         * conditional insn only if the insn has passed its condition code
 | 
						|
         * check, we take the IMPDEF choice to always report CV=1 COND=0xe
 | 
						|
         * (which is also the required value for AArch64 traps).
 | 
						|
         */
 | 
						|
        syndrome = syn_fp_access_trap(1, 0xe, false);
 | 
						|
        break;
 | 
						|
    case CP_ACCESS_TRAP_FP_EL3:
 | 
						|
        target_el = 3;
 | 
						|
        syndrome = syn_fp_access_trap(1, 0xe, false);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    raise_exception(env, EXCP_UDEF, syndrome, target_el);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
 | 
						|
{
 | 
						|
    const ARMCPRegInfo *ri = rip;
 | 
						|
 | 
						|
    ri->writefn(env, ri, value);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
 | 
						|
{
 | 
						|
    const ARMCPRegInfo *ri = rip;
 | 
						|
 | 
						|
    return ri->readfn(env, ri);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
 | 
						|
{
 | 
						|
    const ARMCPRegInfo *ri = rip;
 | 
						|
 | 
						|
    ri->writefn(env, ri, value);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
 | 
						|
{
 | 
						|
    const ARMCPRegInfo *ri = rip;
 | 
						|
 | 
						|
    return ri->readfn(env, ri);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
 | 
						|
{
 | 
						|
    /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
 | 
						|
     * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
 | 
						|
     * to catch that case at translate time.
 | 
						|
     */
 | 
						|
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
 | 
						|
        uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
 | 
						|
                                                extract32(op, 3, 3), 4,
 | 
						|
                                                imm, 0x1f, 0);
 | 
						|
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
 | 
						|
    }
 | 
						|
 | 
						|
    switch (op) {
 | 
						|
    case 0x05: /* SPSel */
 | 
						|
        update_spsel(env, imm);
 | 
						|
        break;
 | 
						|
    case 0x1e: /* DAIFSet */
 | 
						|
        env->daif |= (imm << 6) & PSTATE_DAIF;
 | 
						|
        break;
 | 
						|
    case 0x1f: /* DAIFClear */
 | 
						|
        env->daif &= ~((imm << 6) & PSTATE_DAIF);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(clear_pstate_ss)(CPUARMState *env)
 | 
						|
{
 | 
						|
    env->pstate &= ~PSTATE_SS;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(pre_hvc)(CPUARMState *env)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int cur_el = arm_current_el(env);
 | 
						|
    /* FIXME: Use actual secure state.  */
 | 
						|
    bool secure = false;
 | 
						|
    bool undef;
 | 
						|
 | 
						|
    if (arm_is_psci_call(cpu, EXCP_HVC)) {
 | 
						|
        /* If PSCI is enabled and this looks like a valid PSCI call then
 | 
						|
         * that overrides the architecturally mandated HVC behaviour.
 | 
						|
         */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
        /* If EL2 doesn't exist, HVC always UNDEFs */
 | 
						|
        undef = true;
 | 
						|
    } else if (arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
        /* EL3.HCE has priority over EL2.HCD. */
 | 
						|
        undef = !(env->cp15.scr_el3 & SCR_HCE);
 | 
						|
    } else {
 | 
						|
        undef = env->cp15.hcr_el2 & HCR_HCD;
 | 
						|
    }
 | 
						|
 | 
						|
    /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
 | 
						|
     * For ARMv8/AArch64, HVC is allowed in EL3.
 | 
						|
     * Note that we've already trapped HVC from EL0 at translation
 | 
						|
     * time.
 | 
						|
     */
 | 
						|
    if (secure && (!is_a64(env) || cur_el == 1)) {
 | 
						|
        undef = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (undef) {
 | 
						|
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | 
						|
                        exception_target_el(env));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int cur_el = arm_current_el(env);
 | 
						|
    bool secure = arm_is_secure(env);
 | 
						|
    bool smd = env->cp15.scr_el3 & SCR_SMD;
 | 
						|
    /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
 | 
						|
     * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
 | 
						|
     *  extensions, SMD only applies to NS state.
 | 
						|
     * On ARMv7 without the Virtualization extensions, the SMD bit
 | 
						|
     * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
 | 
						|
     * so we need not special case this here.
 | 
						|
     */
 | 
						|
    bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
 | 
						|
 | 
						|
    if (arm_is_psci_call(cpu, EXCP_SMC)) {
 | 
						|
        /* If PSCI is enabled and this looks like a valid PSCI call then
 | 
						|
         * that overrides the architecturally mandated SMC behaviour.
 | 
						|
         */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
        /* If we have no EL3 then SMC always UNDEFs */
 | 
						|
        undef = true;
 | 
						|
    } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
 | 
						|
        /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
 | 
						|
        raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (undef) {
 | 
						|
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | 
						|
                        exception_target_el(env));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int el_from_spsr(uint32_t spsr)
 | 
						|
{
 | 
						|
    /* Return the exception level that this SPSR is requesting a return to,
 | 
						|
     * or -1 if it is invalid (an illegal return)
 | 
						|
     */
 | 
						|
    if (spsr & PSTATE_nRW) {
 | 
						|
        switch (spsr & CPSR_M) {
 | 
						|
        case ARM_CPU_MODE_USR:
 | 
						|
            return 0;
 | 
						|
        case ARM_CPU_MODE_HYP:
 | 
						|
            return 2;
 | 
						|
        case ARM_CPU_MODE_FIQ:
 | 
						|
        case ARM_CPU_MODE_IRQ:
 | 
						|
        case ARM_CPU_MODE_SVC:
 | 
						|
        case ARM_CPU_MODE_ABT:
 | 
						|
        case ARM_CPU_MODE_UND:
 | 
						|
        case ARM_CPU_MODE_SYS:
 | 
						|
            return 1;
 | 
						|
        case ARM_CPU_MODE_MON:
 | 
						|
            /* Returning to Mon from AArch64 is never possible,
 | 
						|
             * so this is an illegal return.
 | 
						|
             */
 | 
						|
        default:
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (extract32(spsr, 1, 1)) {
 | 
						|
            /* Return with reserved M[1] bit set */
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        if (extract32(spsr, 0, 4) == 1) {
 | 
						|
            /* return to EL0 with M[0] bit set */
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        return extract32(spsr, 2, 2);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(exception_return)(CPUARMState *env)
 | 
						|
{
 | 
						|
    int cur_el = arm_current_el(env);
 | 
						|
    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
 | 
						|
    uint32_t spsr = env->banked_spsr[spsr_idx];
 | 
						|
    int new_el;
 | 
						|
    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
 | 
						|
 | 
						|
    aarch64_save_sp(env, cur_el);
 | 
						|
 | 
						|
    env->exclusive_addr = -1;
 | 
						|
 | 
						|
    /* We must squash the PSTATE.SS bit to zero unless both of the
 | 
						|
     * following hold:
 | 
						|
     *  1. debug exceptions are currently disabled
 | 
						|
     *  2. singlestep will be active in the EL we return to
 | 
						|
     * We check 1 here and 2 after we've done the pstate/cpsr write() to
 | 
						|
     * transition to the EL we're going to.
 | 
						|
     */
 | 
						|
    if (arm_generate_debug_exceptions(env)) {
 | 
						|
        spsr &= ~PSTATE_SS;
 | 
						|
    }
 | 
						|
 | 
						|
    new_el = el_from_spsr(spsr);
 | 
						|
    if (new_el == -1) {
 | 
						|
        goto illegal_return;
 | 
						|
    }
 | 
						|
    if (new_el > cur_el
 | 
						|
        || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
 | 
						|
        /* Disallow return to an EL which is unimplemented or higher
 | 
						|
         * than the current one.
 | 
						|
         */
 | 
						|
        goto illegal_return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
 | 
						|
        /* Return to an EL which is configured for a different register width */
 | 
						|
        goto illegal_return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (new_el == 2 && arm_is_secure_below_el3(env)) {
 | 
						|
        /* Return to the non-existent secure-EL2 */
 | 
						|
        goto illegal_return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
 | 
						|
        && !arm_is_secure_below_el3(env)) {
 | 
						|
        goto illegal_return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!return_to_aa64) {
 | 
						|
        env->aarch64 = 0;
 | 
						|
        /* We do a raw CPSR write because aarch64_sync_64_to_32()
 | 
						|
         * will sort the register banks out for us, and we've already
 | 
						|
         * caught all the bad-mode cases in el_from_spsr().
 | 
						|
         */
 | 
						|
        cpsr_write(env, spsr, ~0, CPSRWriteRaw);
 | 
						|
        if (!arm_singlestep_active(env)) {
 | 
						|
            env->uncached_cpsr &= ~PSTATE_SS;
 | 
						|
        }
 | 
						|
        aarch64_sync_64_to_32(env);
 | 
						|
 | 
						|
        if (spsr & CPSR_T) {
 | 
						|
            env->regs[15] = env->elr_el[cur_el] & ~0x1;
 | 
						|
        } else {
 | 
						|
            env->regs[15] = env->elr_el[cur_el] & ~0x3;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        env->aarch64 = 1;
 | 
						|
        pstate_write(env, spsr);
 | 
						|
        if (!arm_singlestep_active(env)) {
 | 
						|
            env->pstate &= ~PSTATE_SS;
 | 
						|
        }
 | 
						|
        aarch64_restore_sp(env, new_el);
 | 
						|
        env->pc = env->elr_el[cur_el];
 | 
						|
    }
 | 
						|
 | 
						|
    arm_call_el_change_hook(arm_env_get_cpu(env));
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
illegal_return:
 | 
						|
    /* Illegal return events of various kinds have architecturally
 | 
						|
     * mandated behaviour:
 | 
						|
     * restore NZCV and DAIF from SPSR_ELx
 | 
						|
     * set PSTATE.IL
 | 
						|
     * restore PC from ELR_ELx
 | 
						|
     * no change to exception level, execution state or stack pointer
 | 
						|
     */
 | 
						|
    env->pstate |= PSTATE_IL;
 | 
						|
    env->pc = env->elr_el[cur_el];
 | 
						|
    spsr &= PSTATE_NZCV | PSTATE_DAIF;
 | 
						|
    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
 | 
						|
    pstate_write(env, spsr);
 | 
						|
    if (!arm_singlestep_active(env)) {
 | 
						|
        env->pstate &= ~PSTATE_SS;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if the linked breakpoint entry lbn passes its checks */
 | 
						|
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
 | 
						|
{
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint64_t bcr = env->cp15.dbgbcr[lbn];
 | 
						|
    int brps = extract32(cpu->dbgdidr, 24, 4);
 | 
						|
    int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
 | 
						|
    int bt;
 | 
						|
    uint32_t contextidr;
 | 
						|
 | 
						|
    /* Links to unimplemented or non-context aware breakpoints are
 | 
						|
     * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
 | 
						|
     * as if linked to an UNKNOWN context-aware breakpoint (in which
 | 
						|
     * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
 | 
						|
     * We choose the former.
 | 
						|
     */
 | 
						|
    if (lbn > brps || lbn < (brps - ctx_cmps)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    bcr = env->cp15.dbgbcr[lbn];
 | 
						|
 | 
						|
    if (extract64(bcr, 0, 1) == 0) {
 | 
						|
        /* Linked breakpoint disabled : generate no events */
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    bt = extract64(bcr, 20, 4);
 | 
						|
 | 
						|
    /* We match the whole register even if this is AArch32 using the
 | 
						|
     * short descriptor format (in which case it holds both PROCID and ASID),
 | 
						|
     * since we don't implement the optional v7 context ID masking.
 | 
						|
     */
 | 
						|
    contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
 | 
						|
 | 
						|
    switch (bt) {
 | 
						|
    case 3: /* linked context ID match */
 | 
						|
        if (arm_current_el(env) > 1) {
 | 
						|
            /* Context matches never fire in EL2 or (AArch64) EL3 */
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
 | 
						|
    case 5: /* linked address mismatch (reserved in AArch64) */
 | 
						|
    case 9: /* linked VMID match (reserved if no EL2) */
 | 
						|
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
 | 
						|
    default:
 | 
						|
        /* Links to Unlinked context breakpoints must generate no
 | 
						|
         * events; we choose to do the same for reserved values too.
 | 
						|
         */
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
 | 
						|
{
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint64_t cr;
 | 
						|
    int pac, hmc, ssc, wt, lbn;
 | 
						|
    /* TODO: check against CPU security state when we implement TrustZone */
 | 
						|
    bool is_secure = false;
 | 
						|
 | 
						|
    if (is_wp) {
 | 
						|
        if (!env->cpu_watchpoint[n]
 | 
						|
            || !(env->cpu_watchpoint[n]->flags & BP_WATCHPOINT_HIT)) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        cr = env->cp15.dbgwcr[n];
 | 
						|
    } else {
 | 
						|
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
 | 
						|
 | 
						|
        if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        cr = env->cp15.dbgbcr[n];
 | 
						|
    }
 | 
						|
    /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
 | 
						|
     * enabled and that the address and access type match; for breakpoints
 | 
						|
     * we know the address matched; check the remaining fields, including
 | 
						|
     * linked breakpoints. We rely on WCR and BCR having the same layout
 | 
						|
     * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
 | 
						|
     * Note that some combinations of {PAC, HMC, SSC} are reserved and
 | 
						|
     * must act either like some valid combination or as if the watchpoint
 | 
						|
     * were disabled. We choose the former, and use this together with
 | 
						|
     * the fact that EL3 must always be Secure and EL2 must always be
 | 
						|
     * Non-Secure to simplify the code slightly compared to the full
 | 
						|
     * table in the ARM ARM.
 | 
						|
     */
 | 
						|
    pac = extract64(cr, 1, 2);
 | 
						|
    hmc = extract64(cr, 13, 1);
 | 
						|
    ssc = extract64(cr, 14, 2);
 | 
						|
 | 
						|
    switch (ssc) {
 | 
						|
    case 0:
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
    case 3:
 | 
						|
        if (is_secure) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        if (!is_secure) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* TODO: this is not strictly correct because the LDRT/STRT/LDT/STT
 | 
						|
     * "unprivileged access" instructions should match watchpoints as if
 | 
						|
     * they were accesses done at EL0, even if the CPU is at EL1 or higher.
 | 
						|
     * Implementing this would require reworking the core watchpoint code
 | 
						|
     * to plumb the mmu_idx through to this point. Luckily Linux does not
 | 
						|
     * rely on this behaviour currently.
 | 
						|
     * For breakpoints we do want to use the current CPU state.
 | 
						|
     */
 | 
						|
    switch (arm_current_el(env)) {
 | 
						|
    case 3:
 | 
						|
    case 2:
 | 
						|
        if (!hmc) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        if (extract32(pac, 0, 1) == 0) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 0:
 | 
						|
        if (extract32(pac, 1, 1) == 0) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    wt = extract64(cr, 20, 1);
 | 
						|
    lbn = extract64(cr, 16, 4);
 | 
						|
 | 
						|
    if (wt && !linked_bp_matches(cpu, lbn)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool check_watchpoints(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    int n;
 | 
						|
 | 
						|
    /* If watchpoints are disabled globally or we can't take debug
 | 
						|
     * exceptions here then watchpoint firings are ignored.
 | 
						|
     */
 | 
						|
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
 | 
						|
        || !arm_generate_debug_exceptions(env)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
 | 
						|
        if (bp_wp_matches(cpu, n, true)) {
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool check_breakpoints(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    int n;
 | 
						|
 | 
						|
    /* If breakpoints are disabled globally or we can't take debug
 | 
						|
     * exceptions here then breakpoint firings are ignored.
 | 
						|
     */
 | 
						|
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
 | 
						|
        || !arm_generate_debug_exceptions(env)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
 | 
						|
        if (bp_wp_matches(cpu, n, false)) {
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(check_breakpoints)(CPUARMState *env)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    if (check_breakpoints(cpu)) {
 | 
						|
        HELPER(exception_internal(env, EXCP_DEBUG));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
 | 
						|
{
 | 
						|
    /* Called by core code when a CPU watchpoint fires; need to check if this
 | 
						|
     * is also an architectural watchpoint match.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs->uc, cs);
 | 
						|
 | 
						|
    return check_watchpoints(cpu);
 | 
						|
}
 | 
						|
 | 
						|
void arm_debug_excp_handler(CPUState *cs)
 | 
						|
{
 | 
						|
    /* Called by core code when a watchpoint or breakpoint fires;
 | 
						|
     * need to check which one and raise the appropriate exception.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs->uc, cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    CPUWatchpoint *wp_hit = cs->watchpoint_hit;
 | 
						|
 | 
						|
    if (wp_hit) {
 | 
						|
        if (wp_hit->flags & BP_CPU) {
 | 
						|
            bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
 | 
						|
            bool same_el = arm_debug_target_el(env) == arm_current_el(env);
 | 
						|
 | 
						|
            cs->watchpoint_hit = NULL;
 | 
						|
            if (extended_addresses_enabled(env)) {
 | 
						|
                env->exception.fsr = (1 << 9) | 0x22;
 | 
						|
            } else {
 | 
						|
                env->exception.fsr = 0x2;
 | 
						|
            }
 | 
						|
            env->exception.vaddress = wp_hit->hitaddr;
 | 
						|
            raise_exception(env, EXCP_DATA_ABORT,
 | 
						|
                    syn_watchpoint(same_el, 0, wnr),
 | 
						|
                    arm_debug_target_el(env));
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
 | 
						|
        bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
 | 
						|
 | 
						|
        /* (1) GDB breakpoints should be handled first.
 | 
						|
         * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
 | 
						|
         * since singlestep is also done by generating a debug internal
 | 
						|
         * exception.
 | 
						|
         */
 | 
						|
        if (cpu_breakpoint_test(cs, pc, BP_GDB)
 | 
						|
            || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (extended_addresses_enabled(env)) {
 | 
						|
            env->exception.fsr = (1 << 9) | 0x22;
 | 
						|
        } else {
 | 
						|
            env->exception.fsr = 0x2;
 | 
						|
        }
 | 
						|
        /* FAR is UNKNOWN, so doesn't need setting */
 | 
						|
        raise_exception(env, EXCP_PREFETCH_ABORT,
 | 
						|
                        syn_breakpoint(same_el),
 | 
						|
                        arm_debug_target_el(env));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
 | 
						|
   The only way to do that in TCG is a conditional branch, which clobbers
 | 
						|
   all our temporaries.  For now implement these as helper functions.  */
 | 
						|
 | 
						|
/* Similarly for variable shift instructions.  */
 | 
						|
 | 
						|
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | 
						|
{
 | 
						|
    int shift = i & 0xff;
 | 
						|
    if (shift >= 32) {
 | 
						|
        if (shift == 32)
 | 
						|
            env->CF = x & 1;
 | 
						|
        else
 | 
						|
            env->CF = 0;
 | 
						|
        return 0;
 | 
						|
    } else if (shift != 0) {
 | 
						|
        env->CF = (x >> (32 - shift)) & 1;
 | 
						|
        return x << shift;
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | 
						|
{
 | 
						|
    int shift = i & 0xff;
 | 
						|
    if (shift >= 32) {
 | 
						|
        if (shift == 32)
 | 
						|
            env->CF = (x >> 31) & 1;
 | 
						|
        else
 | 
						|
            env->CF = 0;
 | 
						|
        return 0;
 | 
						|
    } else if (shift != 0) {
 | 
						|
        env->CF = (x >> (shift - 1)) & 1;
 | 
						|
        return x >> shift;
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | 
						|
{
 | 
						|
    int shift = i & 0xff;
 | 
						|
    if (shift >= 32) {
 | 
						|
        env->CF = (x >> 31) & 1;
 | 
						|
        return (int32_t)x >> 31;
 | 
						|
    } else if (shift != 0) {
 | 
						|
        env->CF = (x >> (shift - 1)) & 1;
 | 
						|
        return (int32_t)x >> shift;
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | 
						|
{
 | 
						|
    int shift1, shift;
 | 
						|
    shift1 = i & 0xff;
 | 
						|
    shift = shift1 & 0x1f;
 | 
						|
    if (shift == 0) {
 | 
						|
        if (shift1 != 0)
 | 
						|
            env->CF = (x >> 31) & 1;
 | 
						|
        return x;
 | 
						|
    } else {
 | 
						|
        env->CF = (x >> (shift - 1)) & 1;
 | 
						|
        return ((uint32_t)x >> shift) | (x << (32 - shift));
 | 
						|
    }
 | 
						|
}
 |