mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-23 18:21:08 +00:00
2faffb5af1
Switch the MIPS target from the old unassigned_access hook to the new do_transaction_failed hook. Unlike the old hook, do_transaction_failed is only ever called from the TCG memory access paths, so there is no need for the "ignore this if we're using KVM" hack that we were previously using to work around the way unassigned_access was called for all kinds of memory accesses to unassigned physical addresses. The MIPS target does not ever do direct memory reads by physical address (via either ldl_phys etc or address_space_ldl etc), so the only memory accesses this affects are the 'normal' guest loads and stores, which will be handled by the new hook; their behaviour is unchanged. Backports commit 4f02a06d50ef0081089ed8cb3ec7c7986e3c95f8 from qemu
452 lines
15 KiB
C
452 lines
15 KiB
C
/* mips internal definitions and helpers
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#ifndef MIPS_INTERNAL_H
|
|
#define MIPS_INTERNAL_H
|
|
|
|
#include "fpu/softfloat-helpers.h"
|
|
|
|
/* MMU types, the first four entries have the same layout as the
|
|
CP0C0_MT field. */
|
|
enum mips_mmu_types {
|
|
MMU_TYPE_NONE,
|
|
MMU_TYPE_R4000,
|
|
MMU_TYPE_RESERVED,
|
|
MMU_TYPE_FMT,
|
|
MMU_TYPE_R3000,
|
|
MMU_TYPE_R6000,
|
|
MMU_TYPE_R8000
|
|
};
|
|
|
|
struct mips_def_t {
|
|
const char *name;
|
|
int32_t CP0_PRid;
|
|
int32_t CP0_Config0;
|
|
int32_t CP0_Config1;
|
|
int32_t CP0_Config2;
|
|
int32_t CP0_Config3;
|
|
int32_t CP0_Config4;
|
|
int32_t CP0_Config4_rw_bitmask;
|
|
int32_t CP0_Config5;
|
|
int32_t CP0_Config5_rw_bitmask;
|
|
int32_t CP0_Config6;
|
|
int32_t CP0_Config7;
|
|
target_ulong CP0_LLAddr_rw_bitmask;
|
|
int CP0_LLAddr_shift;
|
|
int32_t SYNCI_Step;
|
|
int32_t CCRes;
|
|
int32_t CP0_Status_rw_bitmask;
|
|
int32_t CP0_TCStatus_rw_bitmask;
|
|
int32_t CP0_SRSCtl;
|
|
int32_t CP1_fcr0;
|
|
int32_t CP1_fcr31_rw_bitmask;
|
|
int32_t CP1_fcr31;
|
|
int32_t MSAIR;
|
|
int32_t SEGBITS;
|
|
int32_t PABITS;
|
|
int32_t CP0_SRSConf0_rw_bitmask;
|
|
int32_t CP0_SRSConf0;
|
|
int32_t CP0_SRSConf1_rw_bitmask;
|
|
int32_t CP0_SRSConf1;
|
|
int32_t CP0_SRSConf2_rw_bitmask;
|
|
int32_t CP0_SRSConf2;
|
|
int32_t CP0_SRSConf3_rw_bitmask;
|
|
int32_t CP0_SRSConf3;
|
|
int32_t CP0_SRSConf4_rw_bitmask;
|
|
int32_t CP0_SRSConf4;
|
|
int32_t CP0_PageGrain_rw_bitmask;
|
|
int32_t CP0_PageGrain;
|
|
target_ulong CP0_EBaseWG_rw_bitmask;
|
|
uint64_t insn_flags;
|
|
enum mips_mmu_types mmu_type;
|
|
int32_t SAARP;
|
|
};
|
|
|
|
extern const struct mips_def_t mips_defs[];
|
|
extern const int mips_defs_number;
|
|
|
|
enum CPUMIPSMSADataFormat {
|
|
DF_BYTE = 0,
|
|
DF_HALF,
|
|
DF_WORD,
|
|
DF_DOUBLE
|
|
};
|
|
|
|
void mips_cpu_do_interrupt(CPUState *cpu);
|
|
bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
|
|
void mips_cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
|
|
int flags);
|
|
hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
|
|
int mips_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
|
|
int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
|
|
void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr);
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
typedef struct r4k_tlb_t r4k_tlb_t;
|
|
struct r4k_tlb_t {
|
|
target_ulong VPN;
|
|
uint32_t PageMask;
|
|
uint16_t ASID;
|
|
unsigned int G:1;
|
|
unsigned int C0:3;
|
|
unsigned int C1:3;
|
|
unsigned int V0:1;
|
|
unsigned int V1:1;
|
|
unsigned int D0:1;
|
|
unsigned int D1:1;
|
|
unsigned int XI0:1;
|
|
unsigned int XI1:1;
|
|
unsigned int RI0:1;
|
|
unsigned int RI1:1;
|
|
unsigned int EHINV:1;
|
|
uint64_t PFN[2];
|
|
};
|
|
|
|
struct CPUMIPSTLBContext {
|
|
uint32_t nb_tlb;
|
|
uint32_t tlb_in_use;
|
|
int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
|
|
target_ulong address, int rw, int access_type);
|
|
void (*helper_tlbwi)(struct CPUMIPSState *env);
|
|
void (*helper_tlbwr)(struct CPUMIPSState *env);
|
|
void (*helper_tlbp)(struct CPUMIPSState *env);
|
|
void (*helper_tlbr)(struct CPUMIPSState *env);
|
|
void (*helper_tlbinv)(struct CPUMIPSState *env);
|
|
void (*helper_tlbinvf)(struct CPUMIPSState *env);
|
|
union {
|
|
struct {
|
|
r4k_tlb_t tlb[MIPS_TLB_MAX];
|
|
} r4k;
|
|
} mmu;
|
|
};
|
|
|
|
int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
|
|
target_ulong address, int rw, int access_type);
|
|
int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
|
|
target_ulong address, int rw, int access_type);
|
|
int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
|
|
target_ulong address, int rw, int access_type);
|
|
void r4k_helper_tlbwi(CPUMIPSState *env);
|
|
void r4k_helper_tlbwr(CPUMIPSState *env);
|
|
void r4k_helper_tlbp(CPUMIPSState *env);
|
|
void r4k_helper_tlbr(CPUMIPSState *env);
|
|
void r4k_helper_tlbinv(CPUMIPSState *env);
|
|
void r4k_helper_tlbinvf(CPUMIPSState *env);
|
|
void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
|
|
|
|
void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
vaddr addr, unsigned size,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
MemTxResult response, uintptr_t retaddr);
|
|
hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
|
|
int rw);
|
|
#endif
|
|
|
|
#define cpu_signal_handler cpu_mips_signal_handler
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
extern const struct VMStateDescription vmstate_mips_cpu;
|
|
#endif
|
|
|
|
static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
|
|
{
|
|
return (env->CP0_Status & (1 << CP0St_IE)) &&
|
|
!(env->CP0_Status & (1 << CP0St_EXL)) &&
|
|
!(env->CP0_Status & (1 << CP0St_ERL)) &&
|
|
!(env->hflags & MIPS_HFLAG_DM) &&
|
|
/* Note that the TCStatus IXMT field is initialized to zero,
|
|
and only MT capable cores can set it to one. So we don't
|
|
need to check for MT capabilities here. */
|
|
!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
|
|
}
|
|
|
|
/* Check if there is pending and not masked out interrupt */
|
|
static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
|
|
{
|
|
int32_t pending;
|
|
int32_t status;
|
|
bool r;
|
|
|
|
pending = env->CP0_Cause & CP0Ca_IP_mask;
|
|
status = env->CP0_Status & CP0Ca_IP_mask;
|
|
|
|
if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
|
|
/* A MIPS configured with a vectorizing external interrupt controller
|
|
will feed a vector into the Cause pending lines. The core treats
|
|
the status lines as a vector level, not as indiviual masks. */
|
|
r = pending > status;
|
|
} else {
|
|
/* A MIPS configured with compatibility or VInt (Vectored Interrupts)
|
|
treats the pending lines as individual interrupt lines, the status
|
|
lines are individual masks. */
|
|
r = (pending & status) != 0;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void mips_tcg_init(struct uc_struct *uc);
|
|
|
|
/* TODO QOM'ify CPU reset and remove */
|
|
void cpu_state_reset(CPUMIPSState *s);
|
|
void cpu_mips_realize_env(CPUMIPSState *env);
|
|
|
|
/* cp0_timer.c */
|
|
uint32_t cpu_mips_get_random(CPUMIPSState *env);
|
|
uint32_t cpu_mips_get_count(CPUMIPSState *env);
|
|
void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
|
|
void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
|
|
void cpu_mips_start_count(CPUMIPSState *env);
|
|
void cpu_mips_stop_count(CPUMIPSState *env);
|
|
|
|
/* helper.c */
|
|
bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool probe, uintptr_t retaddr);
|
|
|
|
/* op_helper.c */
|
|
uint32_t float_class_s(uint32_t arg, float_status *fst);
|
|
uint64_t float_class_d(uint64_t arg, float_status *fst);
|
|
|
|
extern unsigned int ieee_rm[];
|
|
int ieee_ex_to_mips(int xcpt);
|
|
void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
|
|
|
|
static inline void restore_rounding_mode(CPUMIPSState *env)
|
|
{
|
|
set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
|
|
&env->active_fpu.fp_status);
|
|
}
|
|
|
|
static inline void restore_flush_mode(CPUMIPSState *env)
|
|
{
|
|
set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0,
|
|
&env->active_fpu.fp_status);
|
|
}
|
|
|
|
static inline void restore_snan_bit_mode(CPUMIPSState *env)
|
|
{
|
|
set_snan_bit_is_one((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) == 0,
|
|
&env->active_fpu.fp_status);
|
|
}
|
|
|
|
static inline void restore_fp_status(CPUMIPSState *env)
|
|
{
|
|
restore_rounding_mode(env);
|
|
restore_flush_mode(env);
|
|
restore_snan_bit_mode(env);
|
|
}
|
|
|
|
static inline void restore_msa_fp_status(CPUMIPSState *env)
|
|
{
|
|
float_status *status = &env->active_tc.msa_fp_status;
|
|
int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM;
|
|
bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0;
|
|
|
|
set_float_rounding_mode(ieee_rm[rounding_mode], status);
|
|
set_flush_to_zero(flush_to_zero, status);
|
|
set_flush_inputs_to_zero(flush_to_zero, status);
|
|
}
|
|
|
|
static inline void restore_pamask(CPUMIPSState *env)
|
|
{
|
|
if (env->hflags & MIPS_HFLAG_ELPA) {
|
|
env->PAMask = (1ULL << env->PABITS) - 1;
|
|
} else {
|
|
env->PAMask = PAMASK_BASE;
|
|
}
|
|
}
|
|
|
|
static inline int mips_vpe_active(CPUMIPSState *env)
|
|
{
|
|
int active = 1;
|
|
|
|
/* Check that the VPE is enabled. */
|
|
if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
|
|
active = 0;
|
|
}
|
|
/* Check that the VPE is activated. */
|
|
if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
|
|
active = 0;
|
|
}
|
|
|
|
/* Now verify that there are active thread contexts in the VPE.
|
|
|
|
This assumes the CPU model will internally reschedule threads
|
|
if the active one goes to sleep. If there are no threads available
|
|
the active one will be in a sleeping state, and we can turn off
|
|
the entire VPE. */
|
|
if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
|
|
/* TC is not activated. */
|
|
active = 0;
|
|
}
|
|
if (env->active_tc.CP0_TCHalt & 1) {
|
|
/* TC is in halt state. */
|
|
active = 0;
|
|
}
|
|
|
|
return active;
|
|
}
|
|
|
|
static inline int mips_vp_active(CPUMIPSState *env)
|
|
{
|
|
// Unicorn: commented out
|
|
//CPUState *other_cs = first_cpu;
|
|
|
|
/* Check if the VP disabled other VPs (which means the VP is enabled) */
|
|
if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
|
|
return 1;
|
|
}
|
|
|
|
/* Check if the virtual processor is disabled due to a DVP */
|
|
// Unicorn: commented out
|
|
#if 0
|
|
CPU_FOREACH(other_cs) {
|
|
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
|
|
if ((&other_cpu->env != env) &&
|
|
((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static inline void compute_hflags(CPUMIPSState *env)
|
|
{
|
|
env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
|
|
MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
|
|
MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
|
|
MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
|
|
MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
|
|
if (env->CP0_Status & (1 << CP0St_ERL)) {
|
|
env->hflags |= MIPS_HFLAG_ERL;
|
|
}
|
|
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
|
|
!(env->CP0_Status & (1 << CP0St_ERL)) &&
|
|
!(env->hflags & MIPS_HFLAG_DM)) {
|
|
env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU;
|
|
}
|
|
#if defined(TARGET_MIPS64)
|
|
if ((env->insn_flags & ISA_MIPS3) &&
|
|
(((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
|
|
(env->CP0_Status & (1 << CP0St_PX)) ||
|
|
(env->CP0_Status & (1 << CP0St_UX)))) {
|
|
env->hflags |= MIPS_HFLAG_64;
|
|
}
|
|
|
|
if (!(env->insn_flags & ISA_MIPS3)) {
|
|
env->hflags |= MIPS_HFLAG_AWRAP;
|
|
} else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
|
|
!(env->CP0_Status & (1 << CP0St_UX))) {
|
|
env->hflags |= MIPS_HFLAG_AWRAP;
|
|
} else if (env->insn_flags & ISA_MIPS64R6) {
|
|
/* Address wrapping for Supervisor and Kernel is specified in R6 */
|
|
if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
|
|
!(env->CP0_Status & (1 << CP0St_SX))) ||
|
|
(((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
|
|
!(env->CP0_Status & (1 << CP0St_KX)))) {
|
|
env->hflags |= MIPS_HFLAG_AWRAP;
|
|
}
|
|
}
|
|
#endif
|
|
if (((env->CP0_Status & (1 << CP0St_CU0)) &&
|
|
!(env->insn_flags & ISA_MIPS32R6)) ||
|
|
!(env->hflags & MIPS_HFLAG_KSU)) {
|
|
env->hflags |= MIPS_HFLAG_CP0;
|
|
}
|
|
if (env->CP0_Status & (1 << CP0St_CU1)) {
|
|
env->hflags |= MIPS_HFLAG_FPU;
|
|
}
|
|
if (env->CP0_Status & (1 << CP0St_FR)) {
|
|
env->hflags |= MIPS_HFLAG_F64;
|
|
}
|
|
if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
|
|
(env->CP0_Config5 & (1 << CP0C5_SBRI))) {
|
|
env->hflags |= MIPS_HFLAG_SBRI;
|
|
}
|
|
if (env->insn_flags & ASE_DSP_R3) {
|
|
/*
|
|
* Our cpu supports DSP R3 ASE, so enable
|
|
* access to DSP R3 resources.
|
|
*/
|
|
if (env->CP0_Status & (1 << CP0St_MX)) {
|
|
env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
|
|
MIPS_HFLAG_DSP_R3;
|
|
}
|
|
} else if (env->insn_flags & ASE_DSP_R2) {
|
|
/*
|
|
* Our cpu supports DSP R2 ASE, so enable
|
|
* access to DSP R2 resources.
|
|
*/
|
|
if (env->CP0_Status & (1 << CP0St_MX)) {
|
|
env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
|
|
}
|
|
|
|
} else if (env->insn_flags & ASE_DSP) {
|
|
/*
|
|
* Our cpu supports DSP ASE, so enable
|
|
* access to DSP resources.
|
|
*/
|
|
if (env->CP0_Status & (1 << CP0St_MX)) {
|
|
env->hflags |= MIPS_HFLAG_DSP;
|
|
}
|
|
|
|
}
|
|
if (env->insn_flags & ISA_MIPS32R2) {
|
|
if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
|
|
env->hflags |= MIPS_HFLAG_COP1X;
|
|
}
|
|
} else if (env->insn_flags & ISA_MIPS32) {
|
|
if (env->hflags & MIPS_HFLAG_64) {
|
|
env->hflags |= MIPS_HFLAG_COP1X;
|
|
}
|
|
} else if (env->insn_flags & ISA_MIPS4) {
|
|
/* All supported MIPS IV CPUs use the XX (CU3) to enable
|
|
and disable the MIPS IV extensions to the MIPS III ISA.
|
|
Some other MIPS IV CPUs ignore the bit, so the check here
|
|
would be too restrictive for them. */
|
|
if (env->CP0_Status & (1U << CP0St_CU3)) {
|
|
env->hflags |= MIPS_HFLAG_COP1X;
|
|
}
|
|
}
|
|
if (env->insn_flags & ASE_MSA) {
|
|
if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
|
|
env->hflags |= MIPS_HFLAG_MSA;
|
|
}
|
|
}
|
|
if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
|
|
if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
|
|
env->hflags |= MIPS_HFLAG_FRE;
|
|
}
|
|
}
|
|
if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
|
|
if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
|
|
env->hflags |= MIPS_HFLAG_ELPA;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cpu_mips_tlb_flush(CPUMIPSState *env);
|
|
void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
|
|
void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
|
|
void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
|
|
|
|
void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
|
|
int error_code, uintptr_t pc);
|
|
|
|
static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
|
|
uint32_t exception,
|
|
uintptr_t pc)
|
|
{
|
|
do_raise_exception_err(env, exception, 0, pc);
|
|
}
|
|
|
|
#endif
|