unicorn/qemu/target/arm/translate-vfp.inc.c
Peter Maydell a75a3e321f
target/arm: Convert VMOV (register) to decodetree
Backports commit 17552b979ebb9848a534c25ebed18a1072710058 from qemu
2019-06-13 18:49:49 -04:00

1966 lines
54 KiB
C

/*
* ARM translation: AArch32 VFP instructions
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005-2007 CodeSourcery
* Copyright (c) 2007 OpenedHand, Ltd.
* Copyright (c) 2019 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This file is intended to be included from translate.c; it uses
* some macros and definitions provided by that file.
* It might be possible to convert it to a standalone .c file eventually.
*/
/* Include the generated VFP decoder */
#include "decode-vfp.inc.c"
#include "decode-vfp-uncond.inc.c"
/*
* Check that VFP access is enabled. If it is, do the necessary
* M-profile lazy-FP handling and then return true.
* If not, emit code to generate an appropriate exception and
* return false.
* The ignore_vfp_enabled argument specifies that we should ignore
* whether VFP is enabled via FPEXC[EN]: this should be true for FMXR/FMRX
* accesses to FPSID, FPEXC, MVFR0, MVFR1, MVFR2, and false for all other insns.
*/
static bool full_vfp_access_check(DisasContext *s, bool ignore_vfp_enabled)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (s->fp_excp_el) {
if (arm_dc_feature(s, ARM_FEATURE_M)) {
gen_exception_insn(s, 4, EXCP_NOCP, syn_uncategorized(),
s->fp_excp_el);
} else {
gen_exception_insn(s, 4, EXCP_UDEF,
syn_fp_access_trap(1, 0xe, false),
s->fp_excp_el);
}
return false;
}
if (!s->vfp_enabled && !ignore_vfp_enabled) {
assert(!arm_dc_feature(s, ARM_FEATURE_M));
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
default_exception_el(s));
return false;
}
if (arm_dc_feature(s, ARM_FEATURE_M)) {
/* Handle M-profile lazy FP state mechanics */
/* Trigger lazy-state preservation if necessary */
if (s->v7m_lspact) {
/*
* Lazy state saving affects external memory and also the NVIC,
* so we must mark it as an IO operation for icount.
*/
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
gen_io_start(tcg_ctx);
}
gen_helper_v7m_preserve_fp_state(tcg_ctx, tcg_ctx->cpu_env);
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
gen_io_end(tcg_ctx);
}
/*
* If the preserve_fp_state helper doesn't throw an exception
* then it will clear LSPACT; we don't need to repeat this for
* any further FP insns in this TB.
*/
s->v7m_lspact = false;
}
/* Update ownership of FP context: set FPCCR.S to match current state */
if (s->v8m_fpccr_s_wrong) {
TCGv_i32 tmp;
tmp = load_cpu_field(s, v7m.fpccr[M_REG_S]);
if (s->v8m_secure) {
tcg_gen_ori_i32(tcg_ctx, tmp, tmp, R_V7M_FPCCR_S_MASK);
} else {
tcg_gen_andi_i32(tcg_ctx, tmp, tmp, ~R_V7M_FPCCR_S_MASK);
}
store_cpu_field(s, tmp, v7m.fpccr[M_REG_S]);
/* Don't need to do this for any further FP insns in this TB */
s->v8m_fpccr_s_wrong = false;
}
if (s->v7m_new_fp_ctxt_needed) {
/*
* Create new FP context by updating CONTROL.FPCA, CONTROL.SFPA
* and the FPSCR.
*/
TCGv_i32 control, fpscr;
uint32_t bits = R_V7M_CONTROL_FPCA_MASK;
fpscr = load_cpu_field(s, v7m.fpdscr[s->v8m_secure]);
gen_helper_vfp_set_fpscr(tcg_ctx, tcg_ctx->cpu_env, fpscr);
tcg_temp_free_i32(tcg_ctx, fpscr);
/*
* We don't need to arrange to end the TB, because the only
* parts of FPSCR which we cache in the TB flags are the VECLEN
* and VECSTRIDE, and those don't exist for M-profile.
*/
if (s->v8m_secure) {
bits |= R_V7M_CONTROL_SFPA_MASK;
}
control = load_cpu_field(s, v7m.control[M_REG_S]);
tcg_gen_ori_i32(tcg_ctx, control, control, bits);
store_cpu_field(s, control, v7m.control[M_REG_S]);
/* Don't need to do this for any further FP insns in this TB */
s->v7m_new_fp_ctxt_needed = false;
}
}
return true;
}
/*
* The most usual kind of VFP access check, for everything except
* FMXR/FMRX to the always-available special registers.
*/
static bool vfp_access_check(DisasContext *s)
{
return full_vfp_access_check(s, false);
}
static bool trans_VSEL(DisasContext *s, arg_VSEL *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t rd, rn, rm;
bool dp = a->dp;
if (!dc_isar_feature(aa32_vsel, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
((a->vm | a->vn | a->vd) & 0x10)) {
return false;
}
rd = a->vd;
rn = a->vn;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
if (dp) {
TCGv_i64 frn, frm, dest;
TCGv_i64 tmp, zero, zf, nf, vf;
zero = tcg_const_i64(tcg_ctx, 0);
frn = tcg_temp_new_i64(tcg_ctx);
frm = tcg_temp_new_i64(tcg_ctx);
dest = tcg_temp_new_i64(tcg_ctx);
zf = tcg_temp_new_i64(tcg_ctx);
nf = tcg_temp_new_i64(tcg_ctx);
vf = tcg_temp_new_i64(tcg_ctx);
tcg_gen_extu_i32_i64(tcg_ctx, zf, tcg_ctx->cpu_ZF);
tcg_gen_ext_i32_i64(tcg_ctx, nf, tcg_ctx->cpu_NF);
tcg_gen_ext_i32_i64(tcg_ctx, vf, tcg_ctx->cpu_VF);
neon_load_reg64(s, frn, rn);
neon_load_reg64(s, frm, rm);
switch (a->cc) {
case 0: /* eq: Z */
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_EQ, dest, zf, zero,
frn, frm);
break;
case 1: /* vs: V */
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_LT, dest, vf, zero,
frn, frm);
break;
case 2: /* ge: N == V -> N ^ V == 0 */
tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_xor_i64(tcg_ctx, tmp, vf, nf);
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
frn, frm);
tcg_temp_free_i64(tcg_ctx, tmp);
break;
case 3: /* gt: !Z && N == V */
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_NE, dest, zf, zero,
frn, frm);
tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_xor_i64(tcg_ctx, tmp, vf, nf);
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
dest, frm);
tcg_temp_free_i64(tcg_ctx, tmp);
break;
}
neon_store_reg64(s, dest, rd);
tcg_temp_free_i64(tcg_ctx, frn);
tcg_temp_free_i64(tcg_ctx, frm);
tcg_temp_free_i64(tcg_ctx, dest);
tcg_temp_free_i64(tcg_ctx, zf);
tcg_temp_free_i64(tcg_ctx, nf);
tcg_temp_free_i64(tcg_ctx, vf);
tcg_temp_free_i64(tcg_ctx, zero);
} else {
TCGv_i32 frn, frm, dest;
TCGv_i32 tmp, zero;
zero = tcg_const_i32(tcg_ctx, 0);
frn = tcg_temp_new_i32(tcg_ctx);
frm = tcg_temp_new_i32(tcg_ctx);
dest = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, frn, rn);
neon_load_reg32(s, frm, rm);
switch (a->cc) {
case 0: /* eq: Z */
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_EQ, dest, tcg_ctx->cpu_ZF, zero,
frn, frm);
break;
case 1: /* vs: V */
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_LT, dest, tcg_ctx->cpu_VF, zero,
frn, frm);
break;
case 2: /* ge: N == V -> N ^ V == 0 */
tmp = tcg_temp_new_i32(tcg_ctx);
tcg_gen_xor_i32(tcg_ctx, tmp, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF);
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
frn, frm);
tcg_temp_free_i32(tcg_ctx, tmp);
break;
case 3: /* gt: !Z && N == V */
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_NE, dest, tcg_ctx->cpu_ZF, zero,
frn, frm);
tmp = tcg_temp_new_i32(tcg_ctx);
tcg_gen_xor_i32(tcg_ctx, tmp, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF);
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
dest, frm);
tcg_temp_free_i32(tcg_ctx, tmp);
break;
}
neon_store_reg32(s, dest, rd);
tcg_temp_free_i32(tcg_ctx, frn);
tcg_temp_free_i32(tcg_ctx, frm);
tcg_temp_free_i32(tcg_ctx, dest);
tcg_temp_free_i32(tcg_ctx, zero);
}
return true;
}
static bool trans_VMINMAXNM(DisasContext *s, arg_VMINMAXNM *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t rd, rn, rm;
bool dp = a->dp;
bool vmin = a->op;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
((a->vm | a->vn | a->vd) & 0x10)) {
return false;
}
rd = a->vd;
rn = a->vn;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, 0);
if (dp) {
TCGv_i64 frn, frm, dest;
frn = tcg_temp_new_i64(tcg_ctx);
frm = tcg_temp_new_i64(tcg_ctx);
dest = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, frn, rn);
neon_load_reg64(s, frm, rm);
if (vmin) {
gen_helper_vfp_minnumd(tcg_ctx, dest, frn, frm, fpst);
} else {
gen_helper_vfp_maxnumd(tcg_ctx, dest, frn, frm, fpst);
}
neon_store_reg64(s, dest, rd);
tcg_temp_free_i64(tcg_ctx, frn);
tcg_temp_free_i64(tcg_ctx, frm);
tcg_temp_free_i64(tcg_ctx, dest);
} else {
TCGv_i32 frn, frm, dest;
frn = tcg_temp_new_i32(tcg_ctx);
frm = tcg_temp_new_i32(tcg_ctx);
dest = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, frn, rn);
neon_load_reg32(s, frm, rm);
if (vmin) {
gen_helper_vfp_minnums(tcg_ctx, dest, frn, frm, fpst);
} else {
gen_helper_vfp_maxnums(tcg_ctx, dest, frn, frm, fpst);
}
neon_store_reg32(s, dest, rd);
tcg_temp_free_i32(tcg_ctx, frn);
tcg_temp_free_i32(tcg_ctx, frm);
tcg_temp_free_i32(tcg_ctx, dest);
}
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
/*
* Table for converting the most common AArch32 encoding of
* rounding mode to arm_fprounding order (which matches the
* common AArch64 order); see ARM ARM pseudocode FPDecodeRM().
*/
static const uint8_t fp_decode_rm[] = {
FPROUNDING_TIEAWAY,
FPROUNDING_TIEEVEN,
FPROUNDING_POSINF,
FPROUNDING_NEGINF,
};
static bool trans_VRINT(DisasContext *s, arg_VRINT *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t rd, rm;
bool dp = a->dp;
TCGv_ptr fpst;
TCGv_i32 tcg_rmode;
int rounding = fp_decode_rm[a->rm];
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
((a->vm | a->vd) & 0x10)) {
return false;
}
rd = a->vd;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, 0);
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rounding));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
if (dp) {
TCGv_i64 tcg_op;
TCGv_i64 tcg_res;
tcg_op = tcg_temp_new_i64(tcg_ctx);
tcg_res = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, tcg_op, rm);
gen_helper_rintd(tcg_ctx, tcg_res, tcg_op, fpst);
neon_store_reg64(s, tcg_res, rd);
tcg_temp_free_i64(tcg_ctx, tcg_op);
tcg_temp_free_i64(tcg_ctx, tcg_res);
} else {
TCGv_i32 tcg_op;
TCGv_i32 tcg_res;
tcg_op = tcg_temp_new_i32(tcg_ctx);
tcg_res = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tcg_op, rm);
gen_helper_rints(tcg_ctx, tcg_res, tcg_op, fpst);
neon_store_reg32(s, tcg_res, rd);
tcg_temp_free_i32(tcg_ctx, tcg_op);
tcg_temp_free_i32(tcg_ctx, tcg_res);
}
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VCVT(DisasContext *s, arg_VCVT *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t rd, rm;
bool dp = a->dp;
TCGv_ptr fpst;
TCGv_i32 tcg_rmode, tcg_shift;
int rounding = fp_decode_rm[a->rm];
bool is_signed = a->op;
if (!dc_isar_feature(aa32_vcvt_dr, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (dp && !dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
return false;
}
rd = a->vd;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, 0);
tcg_shift = tcg_const_i32(tcg_ctx, 0);
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rounding));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
if (dp) {
TCGv_i64 tcg_double, tcg_res;
TCGv_i32 tcg_tmp;
tcg_double = tcg_temp_new_i64(tcg_ctx);
tcg_res = tcg_temp_new_i64(tcg_ctx);
tcg_tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg64(s, tcg_double, rm);
if (is_signed) {
gen_helper_vfp_tosld(tcg_ctx, tcg_res, tcg_double, tcg_shift, fpst);
} else {
gen_helper_vfp_tould(tcg_ctx, tcg_res, tcg_double, tcg_shift, fpst);
}
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_tmp, tcg_res);
neon_store_reg32(s, tcg_tmp, rd);
tcg_temp_free_i32(tcg_ctx, tcg_tmp);
tcg_temp_free_i64(tcg_ctx, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_double);
} else {
TCGv_i32 tcg_single, tcg_res;
tcg_single = tcg_temp_new_i32(tcg_ctx);
tcg_res = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tcg_single, rm);
if (is_signed) {
gen_helper_vfp_tosls(tcg_ctx, tcg_res, tcg_single, tcg_shift, fpst);
} else {
gen_helper_vfp_touls(tcg_ctx, tcg_res, tcg_single, tcg_shift, fpst);
}
neon_store_reg32(s, tcg_res, rd);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_single);
}
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VMOV_to_gp(DisasContext *s, arg_VMOV_to_gp *a)
{
/* VMOV scalar to general purpose register */
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
int pass;
uint32_t offset;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
return false;
}
offset = a->index << a->size;
pass = extract32(offset, 2, 1);
offset = extract32(offset, 0, 2) * 8;
if (a->size != 2 && !arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = neon_load_reg(s, a->vn, pass);
switch (a->size) {
case 0:
if (offset) {
tcg_gen_shri_i32(tcg_ctx, tmp, tmp, offset);
}
if (a->u) {
gen_uxtb(tmp);
} else {
gen_sxtb(tmp);
}
break;
case 1:
if (a->u) {
if (offset) {
tcg_gen_shri_i32(tcg_ctx, tmp, tmp, 16);
} else {
gen_uxth(tmp);
}
} else {
if (offset) {
tcg_gen_sari_i32(tcg_ctx, tmp, tmp, 16);
} else {
gen_sxth(tmp);
}
}
break;
case 2:
break;
}
store_reg(s, a->rt, tmp);
return true;
}
static bool trans_VMOV_from_gp(DisasContext *s, arg_VMOV_from_gp *a)
{
/* VMOV general purpose register to scalar */
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp, tmp2;
int pass;
uint32_t offset;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
return false;
}
offset = a->index << a->size;
pass = extract32(offset, 2, 1);
offset = extract32(offset, 0, 2) * 8;
if (a->size != 2 && !arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = load_reg(s, a->rt);
switch (a->size) {
case 0:
tmp2 = neon_load_reg(s, a->vn, pass);
tcg_gen_deposit_i32(tcg_ctx, tmp, tmp2, tmp, offset, 8);
tcg_temp_free_i32(tcg_ctx, tmp2);
break;
case 1:
tmp2 = neon_load_reg(s, a->vn, pass);
tcg_gen_deposit_i32(tcg_ctx, tmp, tmp2, tmp, offset, 16);
tcg_temp_free_i32(tcg_ctx, tmp2);
break;
case 2:
break;
}
neon_store_reg(s, a->vn, pass, tmp);
return true;
}
static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
{
/* VDUP (general purpose register) */
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
int size, vec_size;
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
return false;
}
if (a->b && a->e) {
return false;
}
if (a->q && (a->vn & 1)) {
return false;
}
vec_size = a->q ? 16 : 8;
if (a->b) {
size = 0;
} else if (a->e) {
size = 1;
} else {
size = 2;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = load_reg(s, a->rt);
tcg_gen_gvec_dup_i32(tcg_ctx, size, neon_reg_offset(a->vn, 0),
vec_size, vec_size, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
return true;
}
static bool trans_VMSR_VMRS(DisasContext *s, arg_VMSR_VMRS *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
bool ignore_vfp_enabled = false;
if (arm_dc_feature(s, ARM_FEATURE_M)) {
/*
* The only M-profile VFP vmrs/vmsr sysreg is FPSCR.
* Writes to R15 are UNPREDICTABLE; we choose to undef.
*/
if (a->rt == 15 || a->reg != ARM_VFP_FPSCR) {
return false;
}
}
switch (a->reg) {
case ARM_VFP_FPSID:
/*
* VFPv2 allows access to FPSID from userspace; VFPv3 restricts
* all ID registers to privileged access only.
*/
if (IS_USER(s) && arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_MVFR)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_MVFR2:
if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_V8)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_FPSCR:
break;
case ARM_VFP_FPEXC:
if (IS_USER(s)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
/* Not present in VFPv3 */
if (IS_USER(s) || arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
break;
default:
return false;
}
if (!full_vfp_access_check(s, ignore_vfp_enabled)) {
return true;
}
if (a->l) {
/* VMRS, move VFP special register to gp register */
switch (a->reg) {
case ARM_VFP_FPSID:
case ARM_VFP_FPEXC:
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
case ARM_VFP_MVFR2:
tmp = load_cpu_field(s, vfp.xregs[a->reg]);
break;
case ARM_VFP_FPSCR:
if (a->rt == 15) {
tmp = load_cpu_field(s, vfp.xregs[ARM_VFP_FPSCR]);
tcg_gen_andi_i32(tcg_ctx, tmp, tmp, 0xf0000000);
} else {
tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_get_fpscr(tcg_ctx, tmp, tcg_ctx->cpu_env);
}
break;
default:
g_assert_not_reached();
}
if (a->rt == 15) {
/* Set the 4 flag bits in the CPSR. */
gen_set_nzcv(s, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
} else {
store_reg(s, a->rt, tmp);
}
} else {
/* VMSR, move gp register to VFP special register */
switch (a->reg) {
case ARM_VFP_FPSID:
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
case ARM_VFP_MVFR2:
/* Writes are ignored. */
break;
case ARM_VFP_FPSCR:
tmp = load_reg(s, a->rt);
gen_helper_vfp_set_fpscr(tcg_ctx, tcg_ctx->cpu_env, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
gen_lookup_tb(s);
break;
case ARM_VFP_FPEXC:
/*
* TODO: VFP subarchitecture support.
* For now, keep the EN bit only
*/
tmp = load_reg(s, a->rt);
tcg_gen_andi_i32(tcg_ctx, tmp, tmp, 1 << 30);
store_cpu_field(s, tmp, vfp.xregs[a->reg]);
gen_lookup_tb(s);
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
tmp = load_reg(s, a->rt);
store_cpu_field(s, tmp, vfp.xregs[a->reg]);
break;
default:
g_assert_not_reached();
}
}
return true;
}
static bool trans_VMOV_single(DisasContext *s, arg_VMOV_single *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
if (!vfp_access_check(s)) {
return true;
}
if (a->l) {
/* VFP to general purpose register */
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vn);
if (a->rt == 15) {
/* Set the 4 flag bits in the CPSR. */
gen_set_nzcv(s, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
} else {
store_reg(s, a->rt, tmp);
}
} else {
/* general purpose register to VFP */
tmp = load_reg(s, a->rt);
neon_store_reg32(s, tmp, a->vn);
tcg_temp_free_i32(tcg_ctx, tmp);
}
return true;
}
static bool trans_VMOV_64_sp(DisasContext *s, arg_VMOV_64_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
/*
* VMOV between two general-purpose registers and two single precision
* floating point registers
*/
if (!vfp_access_check(s)) {
return true;
}
if (a->op) {
/* fpreg to gpreg */
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm);
store_reg(s, a->rt, tmp);
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm + 1);
store_reg(s, a->rt2, tmp);
} else {
/* gpreg to fpreg */
tmp = load_reg(s, a->rt);
neon_store_reg32(s, tmp, a->vm);
tmp = load_reg(s, a->rt2);
neon_store_reg32(s, tmp, a->vm + 1);
}
return true;
}
static bool trans_VMOV_64_dp(DisasContext *s, arg_VMOV_64_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
/*
* VMOV between two general-purpose registers and one double precision
* floating point register
*/
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (a->op) {
/* fpreg to gpreg */
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm * 2);
store_reg(s, a->rt, tmp);
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm * 2 + 1);
store_reg(s, a->rt2, tmp);
} else {
/* gpreg to fpreg */
tmp = load_reg(s, a->rt);
neon_store_reg32(s, tmp, a->vm * 2);
tcg_temp_free_i32(tcg_ctx, tmp);
tmp = load_reg(s, a->rt2);
neon_store_reg32(s, tmp, a->vm * 2 + 1);
tcg_temp_free_i32(tcg_ctx, tmp);
}
return true;
}
static bool trans_VLDR_VSTR_sp(DisasContext *s, arg_VLDR_VSTR_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t offset;
TCGv_i32 addr, tmp;
if (!vfp_access_check(s)) {
return true;
}
offset = a->imm << 2;
if (!a->u) {
offset = -offset;
}
if (s->thumb && a->rn == 15) {
/* This is actually UNPREDICTABLE */
addr = tcg_temp_new_i32(tcg_ctx);
tcg_gen_movi_i32(tcg_ctx, addr, s->pc & ~2);
} else {
addr = load_reg(s, a->rn);
}
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
tmp = tcg_temp_new_i32(tcg_ctx);
if (a->l) {
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
neon_store_reg32(s, tmp, a->vd);
} else {
neon_load_reg32(s, tmp, a->vd);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
}
tcg_temp_free_i32(tcg_ctx, tmp);
tcg_temp_free_i32(tcg_ctx, addr);
return true;
}
static bool trans_VLDR_VSTR_dp(DisasContext *s, arg_VLDR_VSTR_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t offset;
TCGv_i32 addr;
TCGv_i64 tmp;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
offset = a->imm << 2;
if (!a->u) {
offset = -offset;
}
if (s->thumb && a->rn == 15) {
/* This is actually UNPREDICTABLE */
addr = tcg_temp_new_i32(tcg_ctx);
tcg_gen_movi_i32(tcg_ctx, addr, s->pc & ~2);
} else {
addr = load_reg(s, a->rn);
}
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
tmp = tcg_temp_new_i64(tcg_ctx);
if (a->l) {
gen_aa32_ld64(s, tmp, addr, get_mem_index(s));
neon_store_reg64(s, tmp, a->vd);
} else {
neon_load_reg64(s, tmp, a->vd);
gen_aa32_st64(s, tmp, addr, get_mem_index(s));
}
tcg_temp_free_i64(tcg_ctx, tmp);
tcg_temp_free_i32(tcg_ctx, addr);
return true;
}
static bool trans_VLDM_VSTM_sp(DisasContext *s, arg_VLDM_VSTM_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t offset;
TCGv_i32 addr, tmp;
int i, n;
n = a->imm;
if (n == 0 || (a->vd + n) > 32) {
/*
* UNPREDICTABLE cases for bad immediates: we choose to
* UNDEF to avoid generating huge numbers of TCG ops
*/
return false;
}
if (a->rn == 15 && a->w) {
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (s->thumb && a->rn == 15) {
/* This is actually UNPREDICTABLE */
addr = tcg_temp_new_i32(tcg_ctx);
tcg_gen_movi_i32(tcg_ctx, addr, s->pc & ~2);
} else {
addr = load_reg(s, a->rn);
}
if (a->p) {
/* pre-decrement */
tcg_gen_addi_i32(tcg_ctx, addr, addr, -(a->imm << 2));
}
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
/*
* Here 'addr' is the lowest address we will store to,
* and is either the old SP (if post-increment) or
* the new SP (if pre-decrement). For post-increment
* where the old value is below the limit and the new
* value is above, it is UNKNOWN whether the limit check
* triggers; we choose to trigger.
*/
gen_helper_v8m_stackcheck(tcg_ctx, tcg_ctx->cpu_env, addr);
}
offset = 4;
tmp = tcg_temp_new_i32(tcg_ctx);
for (i = 0; i < n; i++) {
if (a->l) {
/* load */
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
neon_store_reg32(s, tmp, a->vd + i);
} else {
/* store */
neon_load_reg32(s, tmp, a->vd + i);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
}
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
}
tcg_temp_free_i32(tcg_ctx, tmp);
if (a->w) {
/* writeback */
if (a->p) {
offset = -offset * n;
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(tcg_ctx, addr);
}
return true;
}
static bool trans_VLDM_VSTM_dp(DisasContext *s, arg_VLDM_VSTM_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t offset;
TCGv_i32 addr;
TCGv_i64 tmp;
int i, n;
n = a->imm >> 1;
if (n == 0 || (a->vd + n) > 32 || n > 16) {
/*
* UNPREDICTABLE cases for bad immediates: we choose to
* UNDEF to avoid generating huge numbers of TCG ops
*/
return false;
}
if (a->rn == 15 && a->w) {
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd + n) > 16) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (s->thumb && a->rn == 15) {
/* This is actually UNPREDICTABLE */
addr = tcg_temp_new_i32(tcg_ctx);
tcg_gen_movi_i32(tcg_ctx, addr, s->pc & ~2);
} else {
addr = load_reg(s, a->rn);
}
if (a->p) {
/* pre-decrement */
tcg_gen_addi_i32(tcg_ctx, addr, addr, -(a->imm << 2));
}
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
/*
* Here 'addr' is the lowest address we will store to,
* and is either the old SP (if post-increment) or
* the new SP (if pre-decrement). For post-increment
* where the old value is below the limit and the new
* value is above, it is UNKNOWN whether the limit check
* triggers; we choose to trigger.
*/
gen_helper_v8m_stackcheck(tcg_ctx, tcg_ctx->cpu_env, addr);
}
offset = 8;
tmp = tcg_temp_new_i64(tcg_ctx);
for (i = 0; i < n; i++) {
if (a->l) {
/* load */
gen_aa32_ld64(s, tmp, addr, get_mem_index(s));
neon_store_reg64(s, tmp, a->vd + i);
} else {
/* store */
neon_load_reg64(s, tmp, a->vd + i);
gen_aa32_st64(s, tmp, addr, get_mem_index(s));
}
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
}
tcg_temp_free_i64(tcg_ctx, tmp);
if (a->w) {
/* writeback */
if (a->p) {
offset = -offset * n;
} else if (a->imm & 1) {
offset = 4;
} else {
offset = 0;
}
if (offset != 0) {
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(tcg_ctx, addr);
}
return true;
}
/*
* Types for callbacks for do_vfp_3op_sp() and do_vfp_3op_dp().
* The callback should emit code to write a value to vd. If
* do_vfp_3op_{sp,dp}() was passed reads_vd then the TCGv vd
* will contain the old value of the relevant VFP register;
* otherwise it must be written to only.
*/
typedef void VFPGen3OpSPFn(TCGContext *, TCGv_i32 vd,
TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst);
typedef void VFPGen3OpDPFn(TCGContext *, TCGv_i64 vd,
TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst);
/*
* Types for callbacks for do_vfp_2op_sp() and do_vfp_2op_dp().
* The callback should emit code to write a value to vd (which
* should be written to only).
*/
typedef void VFPGen2OpSPFn(TCGContext *, TCGv_i32 vd, TCGv_i32 vm);
typedef void VFPGen2OpDPFn(TCGContext *, TCGv_i64 vd, TCGv_i64 vm);
/*
* Perform a 3-operand VFP data processing instruction. fn is the
* callback to do the actual operation; this function deals with the
* code to handle looping around for VFP vector processing.
*/
static bool do_vfp_3op_sp(DisasContext *s, VFPGen3OpSPFn *fn,
int vd, int vn, int vm, bool reads_vd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_m = 0;
uint32_t delta_d = 0;
uint32_t bank_mask = 0;
int veclen = s->vec_len;
TCGv_i32 f0, f1, fd;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
bank_mask = 0x18;
/* Figure out what type of vector operation this is. */
if ((vd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
if ((vm & bank_mask) == 0) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i32(tcg_ctx);
f1 = tcg_temp_new_i32(tcg_ctx);
fd = tcg_temp_new_i32(tcg_ctx);
fpst = get_fpstatus_ptr(s, 0);
neon_load_reg32(s, f0, vn);
neon_load_reg32(s, f1, vm);
for (;;) {
if (reads_vd) {
neon_load_reg32(s, fd, vd);
}
fn(tcg_ctx, fd, f0, f1, fpst);
neon_store_reg32(s, fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
vn = ((vn + delta_d) & (bank_mask - 1)) | (vn & bank_mask);
neon_load_reg32(s, f0, vn);
if (delta_m) {
vm = ((vm + delta_m) & (bank_mask - 1)) | (vm & bank_mask);
neon_load_reg32(s, f1, vm);
}
}
tcg_temp_free_i32(tcg_ctx, f0);
tcg_temp_free_i32(tcg_ctx, f1);
tcg_temp_free_i32(tcg_ctx, fd);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool do_vfp_3op_dp(DisasContext *s, VFPGen3OpDPFn *fn,
int vd, int vn, int vm, bool reads_vd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_m = 0;
uint32_t delta_d = 0;
uint32_t bank_mask = 0;
int veclen = s->vec_len;
TCGv_i64 f0, f1, fd;
TCGv_ptr fpst;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && ((vd | vn | vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
bank_mask = 0xc;
/* Figure out what type of vector operation this is. */
if ((vd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
if ((vm & bank_mask) == 0) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i64(tcg_ctx);
f1 = tcg_temp_new_i64(tcg_ctx);
fd = tcg_temp_new_i64(tcg_ctx);
fpst = get_fpstatus_ptr(s, 0);
neon_load_reg64(s, f0, vn);
neon_load_reg64(s, f1, vm);
for (;;) {
if (reads_vd) {
neon_load_reg64(s, fd, vd);
}
fn(tcg_ctx, fd, f0, f1, fpst);
neon_store_reg64(s, fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
vn = ((vn + delta_d) & (bank_mask - 1)) | (vn & bank_mask);
neon_load_reg64(s, f0, vn);
if (delta_m) {
vm = ((vm + delta_m) & (bank_mask - 1)) | (vm & bank_mask);
neon_load_reg64(s, f1, vm);
}
}
tcg_temp_free_i64(tcg_ctx, f0);
tcg_temp_free_i64(tcg_ctx, f1);
tcg_temp_free_i64(tcg_ctx, fd);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool do_vfp_2op_sp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_m = 0;
uint32_t delta_d = 0;
uint32_t bank_mask = 0;
int veclen = s->vec_len;
TCGv_i32 f0, fd;
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
bank_mask = 0x18;
/* Figure out what type of vector operation this is. */
if ((vd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
if ((vm & bank_mask) == 0) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i32(tcg_ctx);
fd = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, f0, vm);
for (;;) {
fn(tcg_ctx, fd, f0);
neon_store_reg32(s, fd, vd);
if (veclen == 0) {
break;
}
if (delta_m == 0) {
/* single source one-many */
while (veclen--) {
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
neon_store_reg32(s, fd, vd);
}
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
vm = ((vm + delta_m) & (bank_mask - 1)) | (vm & bank_mask);
neon_load_reg32(s, f0, vm);
}
tcg_temp_free_i32(tcg_ctx, f0);
tcg_temp_free_i32(tcg_ctx, fd);
return true;
}
static bool do_vfp_2op_dp(DisasContext *s, VFPGen2OpDPFn *fn, int vd, int vm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_m = 0;
uint32_t delta_d = 0;
uint32_t bank_mask = 0;
int veclen = s->vec_len;
TCGv_i64 f0, fd;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && ((vd | vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
bank_mask = 0xc;
/* Figure out what type of vector operation this is. */
if ((vd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
if ((vm & bank_mask) == 0) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i64(tcg_ctx);
fd = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, f0, vm);
for (;;) {
fn(tcg_ctx, fd, f0);
neon_store_reg64(s, fd, vd);
if (veclen == 0) {
break;
}
if (delta_m == 0) {
/* single source one-many */
while (veclen--) {
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
neon_store_reg64(s, fd, vd);
}
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
vm = ((vm + delta_m) & (bank_mask - 1)) | (vm & bank_mask);
neon_load_reg64(s, f0, vm);
}
tcg_temp_free_i64(tcg_ctx, f0);
tcg_temp_free_i64(tcg_ctx, fd);
return true;
}
static void gen_VMLA_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* Note that order of inputs to the add matters for NaNs */
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_muls(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_adds(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static bool trans_VMLA_sp(DisasContext *s, arg_VMLA_sp *a)
{
return do_vfp_3op_sp(s, gen_VMLA_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLA_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* Note that order of inputs to the add matters for NaNs */
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_muld(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_addd(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static bool trans_VMLA_dp(DisasContext *s, arg_VMLA_sp *a)
{
return do_vfp_3op_dp(s, gen_VMLA_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLS_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/*
* VMLS: vd = vd + -(vn * vm)
* Note that order of inputs to the add matters for NaNs.
*/
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_muls(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negs(tcg_ctx, tmp, tmp);
gen_helper_vfp_adds(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static bool trans_VMLS_sp(DisasContext *s, arg_VMLS_sp *a)
{
return do_vfp_3op_sp(s, gen_VMLS_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLS_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/*
* VMLS: vd = vd + -(vn * vm)
* Note that order of inputs to the add matters for NaNs.
*/
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_muld(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negd(tcg_ctx, tmp, tmp);
gen_helper_vfp_addd(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static bool trans_VMLS_dp(DisasContext *s, arg_VMLS_sp *a)
{
return do_vfp_3op_dp(s, gen_VMLS_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLS_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/*
* VNMLS: -fd + (fn * fm)
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
* plausible looking simplifications because this will give wrong results
* for NaNs.
*/
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_muls(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negs(tcg_ctx, vd, vd);
gen_helper_vfp_adds(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static bool trans_VNMLS_sp(DisasContext *s, arg_VNMLS_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMLS_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLS_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/*
* VNMLS: -fd + (fn * fm)
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
* plausible looking simplifications because this will give wrong results
* for NaNs.
*/
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_muld(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negd(tcg_ctx, vd, vd);
gen_helper_vfp_addd(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static bool trans_VNMLS_dp(DisasContext *s, arg_VNMLS_sp *a)
{
return do_vfp_3op_dp(s, gen_VNMLS_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLA_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* VNMLA: -fd + -(fn * fm) */
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_muls(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negs(tcg_ctx, tmp, tmp);
gen_helper_vfp_negs(tcg_ctx, vd, vd);
gen_helper_vfp_adds(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static bool trans_VNMLA_sp(DisasContext *s, arg_VNMLA_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMLA_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLA_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* VNMLA: -fd + (fn * fm) */
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_muld(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negd(tcg_ctx, tmp, tmp);
gen_helper_vfp_negd(tcg_ctx, vd, vd);
gen_helper_vfp_addd(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static bool trans_VNMLA_dp(DisasContext *s, arg_VNMLA_sp *a)
{
return do_vfp_3op_dp(s, gen_VNMLA_dp, a->vd, a->vn, a->vm, true);
}
static bool trans_VMUL_sp(DisasContext *s, arg_VMUL_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_muls, a->vd, a->vn, a->vm, false);
}
static bool trans_VMUL_dp(DisasContext *s, arg_VMUL_sp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_muld, a->vd, a->vn, a->vm, false);
}
static void gen_VNMUL_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* VNMUL: -(fn * fm) */
gen_helper_vfp_muls(tcg_ctx, vd, vn, vm, fpst);
gen_helper_vfp_negs(tcg_ctx, vd, vd);
}
static bool trans_VNMUL_sp(DisasContext *s, arg_VNMUL_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMUL_sp, a->vd, a->vn, a->vm, false);
}
static void gen_VNMUL_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* VNMUL: -(fn * fm) */
gen_helper_vfp_muld(tcg_ctx, vd, vn, vm, fpst);
gen_helper_vfp_negd(tcg_ctx, vd, vd);
}
static bool trans_VNMUL_dp(DisasContext *s, arg_VNMUL_sp *a)
{
return do_vfp_3op_dp(s, gen_VNMUL_dp, a->vd, a->vn, a->vm, false);
}
static bool trans_VADD_sp(DisasContext *s, arg_VADD_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_adds, a->vd, a->vn, a->vm, false);
}
static bool trans_VADD_dp(DisasContext *s, arg_VADD_sp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_addd, a->vd, a->vn, a->vm, false);
}
static bool trans_VSUB_sp(DisasContext *s, arg_VSUB_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_subs, a->vd, a->vn, a->vm, false);
}
static bool trans_VSUB_dp(DisasContext *s, arg_VSUB_sp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_subd, a->vd, a->vn, a->vm, false);
}
static bool trans_VDIV_sp(DisasContext *s, arg_VDIV_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_divs, a->vd, a->vn, a->vm, false);
}
static bool trans_VDIV_dp(DisasContext *s, arg_VDIV_sp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_divd, a->vd, a->vn, a->vm, false);
}
static bool trans_VFM_sp(DisasContext *s, arg_VFM_sp *a)
{
/*
* VFNMA : fd = muladd(-fd, fn, fm)
* VFNMS : fd = muladd(-fd, -fn, fm)
* VFMA : fd = muladd( fd, fn, fm)
* VFMS : fd = muladd( fd, -fn, fm)
*
* These are fused multiply-add, and must be done as one floating
* point operation with no rounding between the multiplication and
* addition steps. NB that doing the negations here as separate
* steps is correct : an input NaN should come out with its sign
* bit flipped if it is a negated-input.
*/
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 vn, vm, vd;
/*
* Present in VFPv4 only.
* In v7A, UNPREDICTABLE with non-zero vector length/stride; from
* v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
*/
if (!arm_dc_feature(s, ARM_FEATURE_VFP4) ||
(s->vec_len != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vn = tcg_temp_new_i32(tcg_ctx);
vm = tcg_temp_new_i32(tcg_ctx);
vd = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, vn, a->vn);
neon_load_reg32(s, vm, a->vm);
if (a->o2) {
/* VFNMS, VFMS */
gen_helper_vfp_negs(tcg_ctx, vn, vn);
}
neon_load_reg32(s, vd, a->vd);
if (a->o1 & 1) {
/* VFNMA, VFNMS */
gen_helper_vfp_negs(tcg_ctx, vd, vd);
}
fpst = get_fpstatus_ptr(s, 0);
gen_helper_vfp_muladds(tcg_ctx, vd, vn, vm, vd, fpst);
neon_store_reg32(s, vd, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, vn);
tcg_temp_free_i32(tcg_ctx, vm);
tcg_temp_free_i32(tcg_ctx, vd);
return true;
}
static bool trans_VFM_dp(DisasContext *s, arg_VFM_sp *a)
{
/*
* VFNMA : fd = muladd(-fd, fn, fm)
* VFNMS : fd = muladd(-fd, -fn, fm)
* VFMA : fd = muladd( fd, fn, fm)
* VFMS : fd = muladd( fd, -fn, fm)
*
* These are fused multiply-add, and must be done as one floating
* point operation with no rounding between the multiplication and
* addition steps. NB that doing the negations here as separate
* steps is correct : an input NaN should come out with its sign
* bit flipped if it is a negated-input.
*/
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i64 vn, vm, vd;
/*
* Present in VFPv4 only.
* In v7A, UNPREDICTABLE with non-zero vector length/stride; from
* v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
*/
if (!arm_dc_feature(s, ARM_FEATURE_VFP4) ||
(s->vec_len != 0 || s->vec_stride != 0)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && ((a->vd | a->vn | a->vm) & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vn = tcg_temp_new_i64(tcg_ctx);
vm = tcg_temp_new_i64(tcg_ctx);
vd = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, vn, a->vn);
neon_load_reg64(s, vm, a->vm);
if (a->o2) {
/* VFNMS, VFMS */
gen_helper_vfp_negd(tcg_ctx, vn, vn);
}
neon_load_reg64(s, vd, a->vd);
if (a->o1 & 1) {
/* VFNMA, VFNMS */
gen_helper_vfp_negd(tcg_ctx, vd, vd);
}
fpst = get_fpstatus_ptr(s, 0);
gen_helper_vfp_muladdd(tcg_ctx, vd, vn, vm, vd, fpst);
neon_store_reg64(s, vd, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i64(tcg_ctx, vn);
tcg_temp_free_i64(tcg_ctx, vm);
tcg_temp_free_i64(tcg_ctx, vd);
return true;
}
static bool trans_VMOV_imm_sp(DisasContext *s, arg_VMOV_imm_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_d = 0;
uint32_t bank_mask = 0;
int veclen = s->vec_len;
TCGv_i32 fd;
uint32_t n, i, vd;
vd = a->vd;
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
bank_mask = 0x18;
/* Figure out what type of vector operation this is. */
if ((vd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
}
}
n = (a->imm4h << 28) & 0x80000000;
i = ((a->imm4h << 4) & 0x70) | a->imm4l;
if (i & 0x40) {
i |= 0x780;
} else {
i |= 0x800;
}
n |= i << 19;
fd = tcg_temp_new_i32(tcg_ctx);
tcg_gen_movi_i32(tcg_ctx, fd, n);
for (;;) {
neon_store_reg32(s, fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
}
tcg_temp_free_i32(tcg_ctx, fd);
return true;
}
static bool trans_VMOV_imm_dp(DisasContext *s, arg_VMOV_imm_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_d = 0;
uint32_t bank_mask = 0;
int veclen = s->vec_len;
TCGv_i64 fd;
uint32_t n, i, vd;
vd = a->vd;
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (vd & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
bank_mask = 0xc;
/* Figure out what type of vector operation this is. */
if ((vd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
}
}
n = (a->imm4h << 28) & 0x80000000;
i = ((a->imm4h << 4) & 0x70) | a->imm4l;
if (i & 0x40) {
i |= 0x3f80;
} else {
i |= 0x4000;
}
n |= i << 16;
fd = tcg_temp_new_i64(tcg_ctx);
tcg_gen_movi_i64(tcg_ctx, fd, ((uint64_t)n) << 32);
for (;;) {
neon_store_reg64(s, fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
}
tcg_temp_free_i64(tcg_ctx, fd);
return true;
}
static bool trans_VMOV_reg_sp(DisasContext *s, arg_VMOV_reg_sp *a)
{
return do_vfp_2op_sp(s, tcg_gen_mov_i32, a->vd, a->vm);
}
static bool trans_VMOV_reg_dp(DisasContext *s, arg_VMOV_reg_dp *a)
{
return do_vfp_2op_dp(s, tcg_gen_mov_i64, a->vd, a->vm);
}
static bool trans_VABS_sp(DisasContext *s, arg_VABS_sp *a)
{
return do_vfp_2op_sp(s, gen_helper_vfp_abss, a->vd, a->vm);
}
static bool trans_VABS_dp(DisasContext *s, arg_VABS_dp *a)
{
return do_vfp_2op_dp(s, gen_helper_vfp_absd, a->vd, a->vm);
}
static bool trans_VNEG_sp(DisasContext *s, arg_VNEG_sp *a)
{
return do_vfp_2op_sp(s, gen_helper_vfp_negs, a->vd, a->vm);
}
static bool trans_VNEG_dp(DisasContext *s, arg_VNEG_dp *a)
{
return do_vfp_2op_dp(s, gen_helper_vfp_negd, a->vd, a->vm);
}
static void gen_VSQRT_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vm)
{
gen_helper_vfp_sqrts(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
}
static bool trans_VSQRT_sp(DisasContext *s, arg_VSQRT_sp *a)
{
return do_vfp_2op_sp(s, gen_VSQRT_sp, a->vd, a->vm);
}
static void gen_VSQRT_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vm)
{
gen_helper_vfp_sqrtd(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
}
static bool trans_VSQRT_dp(DisasContext *s, arg_VSQRT_dp *a)
{
return do_vfp_2op_dp(s, gen_VSQRT_dp, a->vd, a->vm);
}