mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-11 09:15:38 +00:00
de7bcbae57
Section D6.7 of the ARM ARM states: For the purpose of determining Tag Check Fault handling, unprivileged load and store instructions are treated as if executed at EL0 when executed at either: - EL1, when the Effective value of PSTATE.UAO is 0. - EL2, when both the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and the Effective value of PSTATE.UAO is 0. ARM has confirmed a defect in the pseudocode function AArch64.TagCheckFault that makes it inconsistent with the above wording. The remedy is to adjust references to PSTATE.EL in that function to instead refer to AArch64.AccessUsesEL(acctype), so that unprivileged instructions use SCTLR_EL1.TCF0 and TFSRE0_EL1. The exception type for synchronous tag check faults remains unchanged. This patch implements the described change by partially reverting commits 50244cc76abc and cc97b0019bb5. Backports 2d928adf8a9148510e1b2041145b8a873f4d26df
927 lines
29 KiB
C
927 lines
29 KiB
C
/*
|
|
* ARM v8.5-MemTag Operations
|
|
*
|
|
* Copyright (c) 2020 Linaro, Ltd.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/helper-proto.h"
|
|
|
|
|
|
static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
|
|
{
|
|
if (exclude == 0xffff) {
|
|
return 0;
|
|
}
|
|
if (offset == 0) {
|
|
while (exclude & (1 << tag)) {
|
|
tag = (tag + 1) & 15;
|
|
}
|
|
} else {
|
|
do {
|
|
do {
|
|
tag = (tag + 1) & 15;
|
|
} while (exclude & (1 << tag));
|
|
} while (--offset > 0);
|
|
}
|
|
return tag;
|
|
}
|
|
|
|
/**
|
|
* allocation_tag_mem:
|
|
* @env: the cpu environment
|
|
* @ptr_mmu_idx: the addressing regime to use for the virtual address
|
|
* @ptr: the virtual address for which to look up tag memory
|
|
* @ptr_access: the access to use for the virtual address
|
|
* @ptr_size: the number of bytes in the normal memory access
|
|
* @tag_access: the access to use for the tag memory
|
|
* @tag_size: the number of bytes in the tag memory access
|
|
* @ra: the return address for exception handling
|
|
*
|
|
* Our tag memory is formatted as a sequence of little-endian nibbles.
|
|
* That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
|
|
* tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
|
|
* for the higher addr.
|
|
*
|
|
* Here, resolve the physical address from the virtual address, and return
|
|
* a pointer to the corresponding tag byte. Exit with exception if the
|
|
* virtual address is not accessible for @ptr_access.
|
|
*
|
|
* The @ptr_size and @tag_size values may not have an obvious relation
|
|
* due to the alignment of @ptr, and the number of tag checks required.
|
|
*
|
|
* If there is no tag storage corresponding to @ptr, return NULL.
|
|
*/
|
|
static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
|
|
uint64_t ptr, MMUAccessType ptr_access,
|
|
int ptr_size, MMUAccessType tag_access,
|
|
int tag_size, uintptr_t ra)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
uint64_t clean_ptr = useronly_clean_ptr(ptr);
|
|
int flags = page_get_flags(clean_ptr);
|
|
uint8_t *tags;
|
|
uintptr_t index;
|
|
|
|
if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE : PAGE_READ))) {
|
|
/* SIGSEGV */
|
|
arm_cpu_tlb_fill(env_cpu(env), ptr, ptr_size, ptr_access,
|
|
ptr_mmu_idx, false, ra);
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* Require both MAP_ANON and PROT_MTE for the page. */
|
|
if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
|
|
return NULL;
|
|
}
|
|
|
|
tags = page_get_target_data(clean_ptr);
|
|
if (tags == NULL) {
|
|
size_t alloc_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
|
|
tags = page_alloc_target_data(clean_ptr, alloc_size);
|
|
assert(tags != NULL);
|
|
}
|
|
|
|
index = extract32(ptr, LOG2_TAG_GRANULE + 1,
|
|
TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
|
|
return tags + index;
|
|
#else
|
|
uintptr_t index;
|
|
CPUIOTLBEntry *iotlbentry;
|
|
int in_page, flags;
|
|
ram_addr_t ptr_ra;
|
|
hwaddr ptr_paddr, tag_paddr, xlat;
|
|
MemoryRegion *mr;
|
|
ARMASIdx tag_asi;
|
|
AddressSpace *tag_as;
|
|
void *host;
|
|
|
|
/*
|
|
* Probe the first byte of the virtual address. This raises an
|
|
* exception for inaccessible pages, and resolves the virtual address
|
|
* into the softmmu tlb.
|
|
*
|
|
* When RA == 0, this is for mte_probe1. The page is expected to be
|
|
* valid. Indicate to probe_access_flags no-fault, then assert that
|
|
* we received a valid page.
|
|
*/
|
|
flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
|
|
ra == 0, &host, ra);
|
|
assert(!(flags & TLB_INVALID_MASK));
|
|
|
|
/*
|
|
* Find the iotlbentry for ptr. This *must* be present in the TLB
|
|
* because we just found the mapping.
|
|
* TODO: Perhaps there should be a cputlb helper that returns a
|
|
* matching tlb entry + iotlb entry.
|
|
*/
|
|
index = tlb_index(env, ptr_mmu_idx, ptr);
|
|
# ifdef CONFIG_DEBUG_TCG
|
|
{
|
|
CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
|
|
target_ulong comparator = (ptr_access == MMU_DATA_LOAD
|
|
? entry->addr_read
|
|
: tlb_addr_write(entry));
|
|
g_assert(tlb_hit(comparator, ptr));
|
|
}
|
|
# endif
|
|
iotlbentry = &env->iotlb[ptr_mmu_idx][index];
|
|
|
|
/* If the virtual page MemAttr != Tagged, access unchecked. */
|
|
if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If not backed by host ram, there is no tag storage: access unchecked.
|
|
* This is probably a guest os bug though, so log it.
|
|
*/
|
|
if (unlikely(flags & TLB_MMIO)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
|
|
"but is not backed by host ram\n", ptr);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* The Normal memory access can extend to the next page. E.g. a single
|
|
* 8-byte access to the last byte of a page will check only the last
|
|
* tag on the first page.
|
|
* Any page access exception has priority over tag check exception.
|
|
*/
|
|
in_page = -(ptr | TARGET_PAGE_MASK);
|
|
if (unlikely(ptr_size > in_page)) {
|
|
void *ignore;
|
|
flags |= probe_access_flags(env, ptr + in_page, ptr_access,
|
|
ptr_mmu_idx, ra == 0, &ignore, ra);
|
|
assert(!(flags & TLB_INVALID_MASK));
|
|
}
|
|
|
|
/* Any debug exception has priority over a tag check exception. */
|
|
if (unlikely(flags & TLB_WATCHPOINT)) {
|
|
int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
|
|
assert(ra != 0);
|
|
cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
|
|
iotlbentry->attrs, wp, ra);
|
|
}
|
|
|
|
/*
|
|
* Find the physical address within the normal mem space.
|
|
* The memory region lookup must succeed because TLB_MMIO was
|
|
* not set in the cputlb lookup above.
|
|
*/
|
|
mr = memory_region_from_host(env->uc, host, &ptr_ra);
|
|
tcg_debug_assert(mr != NULL);
|
|
tcg_debug_assert(memory_region_is_ram(mr));
|
|
ptr_paddr = ptr_ra;
|
|
do {
|
|
ptr_paddr += mr->addr;
|
|
mr = mr->container;
|
|
} while (mr);
|
|
|
|
/* Convert to the physical address in tag space. */
|
|
tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
|
|
|
|
/* Look up the address in tag space. */
|
|
tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
|
|
tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
|
|
mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
|
|
tag_access == MMU_DATA_STORE);
|
|
|
|
/*
|
|
* Note that @mr will never be NULL. If there is nothing in the address
|
|
* space at @tag_paddr, the translation will return the unallocated memory
|
|
* region. For our purposes, the result must be ram.
|
|
*/
|
|
if (unlikely(!memory_region_is_ram(mr))) {
|
|
/* ??? Failure is a board configuration error. */
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"Tag Memory @ 0x%" HWADDR_PRIx " not found for "
|
|
"Normal Memory @ 0x%" HWADDR_PRIx "\n",
|
|
tag_paddr, ptr_paddr);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Ensure the tag memory is dirty on write, for migration.
|
|
* Tag memory can never contain code or display memory (vga).
|
|
*/
|
|
if (tag_access == MMU_DATA_STORE) {
|
|
//ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
|
|
//cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
|
|
}
|
|
|
|
return memory_region_get_ram_ptr(mr) + xlat;
|
|
#endif
|
|
}
|
|
|
|
uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
|
|
{
|
|
int rtag;
|
|
|
|
/*
|
|
* Our IMPDEF choice for GCR_EL1.RRND==1 is to behave as if
|
|
* GCR_EL1.RRND==0, always producing deterministic results.
|
|
*/
|
|
uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
|
|
int start = extract32(env->cp15.rgsr_el1, 0, 4);
|
|
int seed = extract32(env->cp15.rgsr_el1, 8, 16);
|
|
int offset, i;
|
|
|
|
/* RandomTag */
|
|
for (i = offset = 0; i < 4; ++i) {
|
|
/* NextRandomTagBit */
|
|
int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
|
|
extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
|
|
seed = (top << 15) | (seed >> 1);
|
|
offset |= top << i;
|
|
}
|
|
rtag = choose_nonexcluded_tag(start, offset, exclude);
|
|
env->cp15.rgsr_el1 = rtag | (seed << 8);
|
|
|
|
return address_with_allocation_tag(rn, rtag);
|
|
}
|
|
|
|
uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
|
|
int32_t offset, uint32_t tag_offset)
|
|
{
|
|
int start_tag = allocation_tag_from_addr(ptr);
|
|
uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
|
|
int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
|
|
|
|
return address_with_allocation_tag(ptr + offset, rtag);
|
|
}
|
|
|
|
static int load_tag1(uint64_t ptr, uint8_t *mem)
|
|
{
|
|
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
|
|
return extract32(*mem, ofs, 4);
|
|
}
|
|
|
|
uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
uint8_t *mem;
|
|
int rtag = 0;
|
|
|
|
/* Trap if accessing an invalid page. */
|
|
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
|
|
MMU_DATA_LOAD, 1, GETPC());
|
|
|
|
/* Load if page supports tags. */
|
|
if (mem) {
|
|
rtag = load_tag1(ptr, mem);
|
|
}
|
|
|
|
return address_with_allocation_tag(xt, rtag);
|
|
}
|
|
|
|
static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
|
|
{
|
|
if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
|
|
arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
|
|
cpu_mmu_index(env, false), ra);
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* For use in a non-parallel context, store to the given nibble. */
|
|
static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
|
|
{
|
|
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
|
|
*mem = deposit32(*mem, ofs, 4, tag);
|
|
}
|
|
|
|
/* For use in a parallel context, atomically store to the given nibble. */
|
|
static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
|
|
{
|
|
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
|
|
uint8_t old = atomic_read(mem);
|
|
|
|
while (1) {
|
|
uint8_t new = deposit32(old, ofs, 4, tag);
|
|
uint8_t cmp = atomic_cmpxchg(mem, old, new);
|
|
if (likely(cmp == old)) {
|
|
return;
|
|
}
|
|
old = cmp;
|
|
}
|
|
}
|
|
|
|
typedef void stg_store1(uint64_t, uint8_t *, int);
|
|
|
|
static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
|
|
uintptr_t ra, stg_store1 store1)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
uint8_t *mem;
|
|
|
|
check_tag_aligned(env, ptr, ra);
|
|
|
|
/* Trap if accessing an invalid page. */
|
|
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
|
|
MMU_DATA_STORE, 1, ra);
|
|
|
|
/* Store if page supports tags. */
|
|
if (mem) {
|
|
store1(ptr, mem, allocation_tag_from_addr(xt));
|
|
}
|
|
}
|
|
|
|
void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
|
{
|
|
do_stg(env, ptr, xt, GETPC(), store_tag1);
|
|
}
|
|
|
|
void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
|
{
|
|
do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
|
|
}
|
|
|
|
void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
uintptr_t ra = GETPC();
|
|
|
|
check_tag_aligned(env, ptr, ra);
|
|
probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
|
|
}
|
|
|
|
static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
|
|
uintptr_t ra, stg_store1 store1)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
int tag = allocation_tag_from_addr(xt);
|
|
uint8_t *mem1, *mem2;
|
|
|
|
check_tag_aligned(env, ptr, ra);
|
|
|
|
/*
|
|
* Trap if accessing an invalid page(s).
|
|
* This takes priority over !allocation_tag_access_enabled.
|
|
*/
|
|
if (ptr & TAG_GRANULE) {
|
|
/* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
|
|
mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
|
|
TAG_GRANULE, MMU_DATA_STORE, 1, ra);
|
|
mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
|
|
MMU_DATA_STORE, TAG_GRANULE,
|
|
MMU_DATA_STORE, 1, ra);
|
|
|
|
/* Store if page(s) support tags. */
|
|
if (mem1) {
|
|
store1(TAG_GRANULE, mem1, tag);
|
|
}
|
|
if (mem2) {
|
|
store1(0, mem2, tag);
|
|
}
|
|
} else {
|
|
/* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
|
|
mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
|
|
2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
|
|
if (mem1) {
|
|
tag |= tag << 4;
|
|
atomic_set(mem1, tag);
|
|
}
|
|
}
|
|
}
|
|
|
|
void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
|
{
|
|
do_st2g(env, ptr, xt, GETPC(), store_tag1);
|
|
}
|
|
|
|
void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
|
{
|
|
do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
|
|
}
|
|
|
|
void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
uintptr_t ra = GETPC();
|
|
int in_page = -(ptr | TARGET_PAGE_MASK);
|
|
|
|
check_tag_aligned(env, ptr, ra);
|
|
|
|
if (likely(in_page >= 2 * TAG_GRANULE)) {
|
|
probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
|
|
} else {
|
|
probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
|
|
probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
|
|
}
|
|
}
|
|
|
|
#define LDGM_STGM_SIZE (4 << GMID_EL1_BS)
|
|
|
|
uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
uintptr_t ra = GETPC();
|
|
void *tag_mem;
|
|
|
|
ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
|
|
|
|
/* Trap if accessing an invalid page. */
|
|
tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
|
|
LDGM_STGM_SIZE, MMU_DATA_LOAD,
|
|
LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
|
|
|
|
/* The tag is squashed to zero if the page does not support tags. */
|
|
if (!tag_mem) {
|
|
return 0;
|
|
}
|
|
|
|
QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
|
|
/*
|
|
* We are loading 64-bits worth of tags. The ordering of elements
|
|
* within the word corresponds to a 64-bit little-endian operation.
|
|
*/
|
|
return ldq_le_p(tag_mem);
|
|
}
|
|
|
|
void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
uintptr_t ra = GETPC();
|
|
void *tag_mem;
|
|
|
|
ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
|
|
|
|
/* Trap if accessing an invalid page. */
|
|
tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
|
|
LDGM_STGM_SIZE, MMU_DATA_LOAD,
|
|
LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
|
|
|
|
/*
|
|
* Tag store only happens if the page support tags,
|
|
* and if the OS has enabled access to the tags.
|
|
*/
|
|
if (!tag_mem) {
|
|
return;
|
|
}
|
|
|
|
QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
|
|
/*
|
|
* We are storing 64-bits worth of tags. The ordering of elements
|
|
* within the word corresponds to a 64-bit little-endian operation.
|
|
*/
|
|
stq_le_p(tag_mem, val);
|
|
}
|
|
|
|
void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
int log2_dcz_bytes, log2_tag_bytes;
|
|
intptr_t dcz_bytes, tag_bytes;
|
|
uint8_t *mem;
|
|
|
|
/*
|
|
* In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
|
|
* i.e. 32 bytes, which is an unreasonably small dcz anyway,
|
|
* to make sure that we can access one complete tag byte here.
|
|
*/
|
|
log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
|
|
log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
|
|
dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
|
|
tag_bytes = (intptr_t)1 << log2_tag_bytes;
|
|
ptr &= -dcz_bytes;
|
|
|
|
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
|
|
MMU_DATA_STORE, tag_bytes, ra);
|
|
if (mem) {
|
|
int tag_pair = (val & 0xf) * 0x11;
|
|
memset(mem, tag_pair, tag_bytes);
|
|
}
|
|
}
|
|
|
|
/* Record a tag check failure. */
|
|
static void mte_check_fail(CPUARMState *env, uint32_t desc,
|
|
uint64_t dirty_ptr, uintptr_t ra)
|
|
{
|
|
int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
|
|
ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
|
|
int el, reg_el, tcf, select, is_write, syn;
|
|
uint64_t sctlr;
|
|
|
|
reg_el = regime_el(env, arm_mmu_idx);
|
|
sctlr = env->cp15.sctlr_el[reg_el];
|
|
|
|
switch (arm_mmu_idx) {
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E20_0:
|
|
el = 0;
|
|
tcf = extract64(sctlr, 38, 2);
|
|
break;
|
|
default:
|
|
el = reg_el;
|
|
tcf = extract64(sctlr, 40, 2);
|
|
}
|
|
|
|
switch (tcf) {
|
|
case 1:
|
|
/*
|
|
* Tag check fail causes a synchronous exception.
|
|
*
|
|
* In restore_state_to_opc, we set the exception syndrome
|
|
* for the load or store operation. Unwind first so we
|
|
* may overwrite that with the syndrome for the tag check.
|
|
*/
|
|
cpu_restore_state(env_cpu(env), ra, true);
|
|
env->exception.vaddress = dirty_ptr;
|
|
is_write = FIELD_EX32(desc, MTEDESC, WRITE);
|
|
syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0,
|
|
is_write, 0x11);
|
|
raise_exception(env, EXCP_DATA_ABORT, syn, exception_target_el(env));
|
|
/* noreturn, but fall through to the assert anyway */
|
|
|
|
case 0:
|
|
/*
|
|
* Tag check fail does not affect the PE.
|
|
* We eliminate this case by not setting MTE_ACTIVE
|
|
* in tb_flags, so that we never make this runtime call.
|
|
*/
|
|
g_assert_not_reached();
|
|
|
|
case 2:
|
|
/* Tag check fail causes asynchronous flag set. */
|
|
if (regime_has_2_ranges(arm_mmu_idx)) {
|
|
select = extract64(dirty_ptr, 55, 1);
|
|
} else {
|
|
select = 0;
|
|
}
|
|
env->cp15.tfsr_el[el] |= 1 << select;
|
|
break;
|
|
|
|
default:
|
|
/* Case 3: Reserved. */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Tag check failure with SCTLR_EL%d.TCF%s "
|
|
"set to reserved value %d\n",
|
|
reg_el, el ? "" : "0", tcf);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform an MTE checked access for a single logical or atomic access.
|
|
*/
|
|
static bool mte_probe1_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
|
|
uintptr_t ra, int bit55)
|
|
{
|
|
int mem_tag, mmu_idx, ptr_tag, size;
|
|
MMUAccessType type;
|
|
uint8_t *mem;
|
|
|
|
ptr_tag = allocation_tag_from_addr(ptr);
|
|
|
|
if (tcma_check(desc, bit55, ptr_tag)) {
|
|
return true;
|
|
}
|
|
|
|
mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
|
|
type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
size = FIELD_EX32(desc, MTEDESC, ESIZE);
|
|
|
|
mem = allocation_tag_mem(env, mmu_idx, ptr, type, size,
|
|
MMU_DATA_LOAD, 1, ra);
|
|
if (!mem) {
|
|
return true;
|
|
}
|
|
|
|
mem_tag = load_tag1(ptr, mem);
|
|
return ptr_tag == mem_tag;
|
|
}
|
|
|
|
/*
|
|
* No-fault version of mte_check1, to be used by SVE for MemSingleNF.
|
|
* Returns false if the access is Checked and the check failed. This
|
|
* is only intended to probe the tag -- the validity of the page must
|
|
* be checked beforehand.
|
|
*/
|
|
bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr)
|
|
{
|
|
int bit55 = extract64(ptr, 55, 1);
|
|
|
|
/* If TBI is disabled, the access is unchecked. */
|
|
if (unlikely(!tbi_check(desc, bit55))) {
|
|
return true;
|
|
}
|
|
|
|
return mte_probe1_int(env, desc, ptr, 0, bit55);
|
|
}
|
|
|
|
uint64_t mte_check1_(CPUARMState *env, uint32_t desc,
|
|
uint64_t ptr, uintptr_t ra)
|
|
{
|
|
int bit55 = extract64(ptr, 55, 1);
|
|
|
|
/* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
|
|
if (unlikely(!tbi_check(desc, bit55))) {
|
|
return ptr;
|
|
}
|
|
|
|
if (unlikely(!mte_probe1_int(env, desc, ptr, ra, bit55))) {
|
|
mte_check_fail(env, desc, ptr, ra);
|
|
}
|
|
|
|
return useronly_clean_ptr(ptr);
|
|
}
|
|
|
|
uint64_t HELPER(mte_check_1)(CPUARMState *env, uint32_t desc, uint64_t ptr)
|
|
{
|
|
return mte_check1_(env, desc, ptr, GETPC());
|
|
}
|
|
|
|
/**
|
|
* checkN:
|
|
* @tag: tag memory to test
|
|
* @odd: true to begin testing at tags at odd nibble
|
|
* @cmp: the tag to compare against
|
|
* @count: number of tags to test
|
|
*
|
|
* Return the number of successful tests.
|
|
* Thus a return value < @count indicates a failure.
|
|
*
|
|
* A note about sizes: count is expected to be small.
|
|
*
|
|
* The most common use will be LDP/STP of two integer registers,
|
|
* which means 16 bytes of memory touching at most 2 tags, but
|
|
* often the access is aligned and thus just 1 tag.
|
|
*
|
|
* Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
|
|
* touching at most 5 tags. SVE LDR/STR (vector) with the default
|
|
* vector length is also 64 bytes; the maximum architectural length
|
|
* is 256 bytes touching at most 9 tags.
|
|
*
|
|
* The loop below uses 7 logical operations and 1 memory operation
|
|
* per tag pair. An implementation that loads an aligned word and
|
|
* uses masking to ignore adjacent tags requires 18 logical operations
|
|
* and thus does not begin to pay off until 6 tags.
|
|
* Which, according to the survey above, is unlikely to be common.
|
|
*/
|
|
static int checkN(uint8_t *mem, int odd, int cmp, int count)
|
|
{
|
|
int n = 0, diff;
|
|
|
|
/* Replicate the test tag and compare. */
|
|
cmp *= 0x11;
|
|
diff = *mem++ ^ cmp;
|
|
|
|
if (odd) {
|
|
goto start_odd;
|
|
}
|
|
|
|
while (1) {
|
|
/* Test even tag. */
|
|
if (unlikely((diff) & 0x0f)) {
|
|
break;
|
|
}
|
|
if (++n == count) {
|
|
break;
|
|
}
|
|
|
|
start_odd:
|
|
/* Test odd tag. */
|
|
if (unlikely((diff) & 0xf0)) {
|
|
break;
|
|
}
|
|
if (++n == count) {
|
|
break;
|
|
}
|
|
|
|
diff = *mem++ ^ cmp;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
uint64_t mte_checkN_(CPUARMState *env, uint32_t desc,
|
|
uint64_t ptr, uintptr_t ra)
|
|
{
|
|
int mmu_idx, ptr_tag, bit55;
|
|
uint64_t ptr_last, ptr_end, prev_page, next_page;
|
|
uint64_t tag_first, tag_end;
|
|
uint64_t tag_byte_first, tag_byte_end;
|
|
uint32_t esize, total, tag_count, tag_size, n, c;
|
|
uint8_t *mem1, *mem2;
|
|
MMUAccessType type;
|
|
|
|
bit55 = extract64(ptr, 55, 1);
|
|
|
|
/* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
|
|
if (unlikely(!tbi_check(desc, bit55))) {
|
|
return ptr;
|
|
}
|
|
|
|
ptr_tag = allocation_tag_from_addr(ptr);
|
|
|
|
if (tcma_check(desc, bit55, ptr_tag)) {
|
|
goto done;
|
|
}
|
|
|
|
mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
|
|
type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
esize = FIELD_EX32(desc, MTEDESC, ESIZE);
|
|
total = FIELD_EX32(desc, MTEDESC, TSIZE);
|
|
|
|
/* Find the addr of the end of the access, and of the last element. */
|
|
ptr_end = ptr + total;
|
|
ptr_last = ptr_end - esize;
|
|
|
|
/* Round the bounds to the tag granule, and compute the number of tags. */
|
|
tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
|
|
tag_end = QEMU_ALIGN_UP(ptr_last, TAG_GRANULE);
|
|
tag_count = (tag_end - tag_first) / TAG_GRANULE;
|
|
|
|
/* Round the bounds to twice the tag granule, and compute the bytes. */
|
|
tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
|
|
tag_byte_end = QEMU_ALIGN_UP(ptr_last, 2 * TAG_GRANULE);
|
|
|
|
/* Locate the page boundaries. */
|
|
prev_page = ptr & TARGET_PAGE_MASK;
|
|
next_page = prev_page + TARGET_PAGE_SIZE;
|
|
|
|
if (likely(tag_end - prev_page <= TARGET_PAGE_SIZE)) {
|
|
/* Memory access stays on one page. */
|
|
tag_size = (tag_byte_end - tag_byte_first) / (2 * TAG_GRANULE);
|
|
mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, total,
|
|
MMU_DATA_LOAD, tag_size, ra);
|
|
if (!mem1) {
|
|
goto done;
|
|
}
|
|
/* Perform all of the comparisons. */
|
|
n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
|
|
} else {
|
|
/* Memory access crosses to next page. */
|
|
tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
|
|
mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
|
|
MMU_DATA_LOAD, tag_size, ra);
|
|
|
|
tag_size = (tag_byte_end - next_page) / (2 * TAG_GRANULE);
|
|
mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
|
|
ptr_end - next_page,
|
|
MMU_DATA_LOAD, tag_size, ra);
|
|
|
|
/*
|
|
* Perform all of the comparisons.
|
|
* Note the possible but unlikely case of the operation spanning
|
|
* two pages that do not both have tagging enabled.
|
|
*/
|
|
n = c = (next_page - tag_first) / TAG_GRANULE;
|
|
if (mem1) {
|
|
n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
|
|
}
|
|
if (n == c) {
|
|
if (!mem2) {
|
|
goto done;
|
|
}
|
|
n += checkN(mem2, 0, ptr_tag, tag_count - c);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we failed, we know which granule. Compute the element that
|
|
* is first in that granule, and signal failure on that element.
|
|
*/
|
|
if (unlikely(n < tag_count)) {
|
|
uint64_t fail_ofs;
|
|
|
|
fail_ofs = tag_first + n * TAG_GRANULE - ptr;
|
|
fail_ofs = ROUND_UP(fail_ofs, esize);
|
|
mte_check_fail(env, desc, ptr + fail_ofs, ra);
|
|
}
|
|
|
|
done:
|
|
return useronly_clean_ptr(ptr);
|
|
}
|
|
|
|
uint64_t HELPER(mte_check_N)(CPUARMState *env, uint32_t desc, uint64_t ptr)
|
|
{
|
|
return mte_checkN_(env, desc, ptr, GETPC());
|
|
}
|
|
|
|
/*
|
|
* Perform an MTE checked access for DC_ZVA.
|
|
*/
|
|
uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int log2_dcz_bytes, log2_tag_bytes;
|
|
int mmu_idx, bit55;
|
|
intptr_t dcz_bytes, tag_bytes, i;
|
|
void *mem;
|
|
uint64_t ptr_tag, mem_tag, align_ptr;
|
|
|
|
bit55 = extract64(ptr, 55, 1);
|
|
|
|
/* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
|
|
if (unlikely(!tbi_check(desc, bit55))) {
|
|
return ptr;
|
|
}
|
|
|
|
ptr_tag = allocation_tag_from_addr(ptr);
|
|
|
|
if (tcma_check(desc, bit55, ptr_tag)) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
|
|
* i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
|
|
* sure that we can access one complete tag byte here.
|
|
*/
|
|
log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
|
|
log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
|
|
dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
|
|
tag_bytes = (intptr_t)1 << log2_tag_bytes;
|
|
align_ptr = ptr & -dcz_bytes;
|
|
|
|
/*
|
|
* Trap if accessing an invalid page. DC_ZVA requires that we supply
|
|
* the original pointer for an invalid page. But watchpoints require
|
|
* that we probe the actual space. So do both.
|
|
*/
|
|
mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
|
|
(void) probe_write(env, ptr, 1, mmu_idx, ra);
|
|
mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
|
|
dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
|
|
if (!mem) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
|
|
* it is quite easy to perform all of the comparisons at once without
|
|
* any extra masking.
|
|
*
|
|
* The most common zva block size is 64; some of the thunderx cpus use
|
|
* a block size of 128. For user-only, aarch64_max_initfn will set the
|
|
* block size to 512. Fill out the other cases for future-proofing.
|
|
*
|
|
* In order to be able to find the first miscompare later, we want the
|
|
* tag bytes to be in little-endian order.
|
|
*/
|
|
switch (log2_tag_bytes) {
|
|
case 0: /* zva_blocksize 32 */
|
|
mem_tag = *(uint8_t *)mem;
|
|
ptr_tag *= 0x11u;
|
|
break;
|
|
case 1: /* zva_blocksize 64 */
|
|
mem_tag = cpu_to_le16(*(uint16_t *)mem);
|
|
ptr_tag *= 0x1111u;
|
|
break;
|
|
case 2: /* zva_blocksize 128 */
|
|
mem_tag = cpu_to_le32(*(uint32_t *)mem);
|
|
ptr_tag *= 0x11111111u;
|
|
break;
|
|
case 3: /* zva_blocksize 256 */
|
|
mem_tag = cpu_to_le64(*(uint64_t *)mem);
|
|
ptr_tag *= 0x1111111111111111ull;
|
|
break;
|
|
|
|
default: /* zva_blocksize 512, 1024, 2048 */
|
|
ptr_tag *= 0x1111111111111111ull;
|
|
i = 0;
|
|
do {
|
|
mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
|
|
if (unlikely(mem_tag != ptr_tag)) {
|
|
goto fail;
|
|
}
|
|
i += 8;
|
|
align_ptr += 16 * TAG_GRANULE;
|
|
} while (i < tag_bytes);
|
|
goto done;
|
|
}
|
|
|
|
if (likely(mem_tag == ptr_tag)) {
|
|
goto done;
|
|
}
|
|
|
|
fail:
|
|
/* Locate the first nibble that differs. */
|
|
i = ctz64(mem_tag ^ ptr_tag) >> 4;
|
|
mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
|
|
|
|
done:
|
|
return useronly_clean_ptr(ptr);
|
|
}
|