unicorn/qemu/target/arm/vec_helper.c
Chetan Pant c7f6786089 arm tcg cpus: Fix Lesser GPL version number
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.

Backports 50f57e09fda4b7ffbc5ba62aad6cebf660824023
2021-03-02 13:30:35 -05:00

1941 lines
66 KiB
C

/*
* ARM AdvSIMD / SVE Vector Operations
*
* Copyright (c) 2018 Linaro
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
#include "fpu/softfloat.h"
#include "vec_internal.h"
/* Note that vector data is stored in host-endian 64-bit chunks,
so addressing units smaller than that needs a host-endian fixup. */
#ifdef HOST_WORDS_BIGENDIAN
#define H1(x) ((x) ^ 7)
#define H2(x) ((x) ^ 3)
#define H4(x) ((x) ^ 1)
#else
#define H1(x) (x)
#define H2(x) (x)
#define H4(x) (x)
#endif
/* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
static int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3,
bool neg, bool round, uint32_t *sat)
{
/*
* Simplify:
* = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
* = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
*/
int32_t ret = (int32_t)src1 * src2;
if (neg) {
ret = -ret;
}
ret += ((int32_t)src3 << 15) + (round << 14);
ret >>= 15;
if (ret != (int16_t)ret) {
*sat = 1;
ret = (ret < 0 ? INT16_MIN : INT16_MAX);
}
return ret;
}
uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
uint32_t src2, uint32_t src3)
{
uint32_t *sat = &env->vfp.qc[0];
uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat);
uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
false, true, sat);
return deposit32(e1, 16, 16, e2);
}
void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int16_t *d = vd;
int16_t *n = vn;
int16_t *m = vm;
uintptr_t i;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
uint32_t src2, uint32_t src3)
{
uint32_t *sat = &env->vfp.qc[0];
uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat);
uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
true, true, sat);
return deposit32(e1, 16, 16, e2);
}
void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int16_t *d = vd;
int16_t *n = vn;
int16_t *m = vm;
uintptr_t i;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
static int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3,
bool neg, bool round, uint32_t *sat)
{
/* Simplify similarly to int_qrdmlah_s16 above. */
int64_t ret = (int64_t)src1 * src2;
if (neg) {
ret = -ret;
}
ret += ((int64_t)src3 << 31) + (round << 30);
ret >>= 31;
if (ret != (int32_t)ret) {
*sat = 1;
ret = (ret < 0 ? INT32_MIN : INT32_MAX);
}
return ret;
}
uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
int32_t src2, int32_t src3)
{
uint32_t *sat = &env->vfp.qc[0];
return do_sqrdmlah_s(src1, src2, src3, false, true, sat);
}
void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int32_t *d = vd;
int32_t *n = vn;
int32_t *m = vm;
uintptr_t i;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
int32_t src2, int32_t src3)
{
uint32_t *sat = &env->vfp.qc[0];
return do_sqrdmlah_s(src1, src2, src3, true, true, sat);
}
void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int32_t *d = vd;
int32_t *n = vn;
int32_t *m = vm;
uintptr_t i;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/* Integer 8 and 16-bit dot-product.
*
* Note that for the loops herein, host endianness does not matter
* with respect to the ordering of data within the 64-bit lanes.
* All elements are treated equally, no matter where they are.
*/
void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint32_t *d = vd;
int8_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] += n[i * 4 + 0] * m[i * 4 + 0]
+ n[i * 4 + 1] * m[i * 4 + 1]
+ n[i * 4 + 2] * m[i * 4 + 2]
+ n[i * 4 + 3] * m[i * 4 + 3];
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint32_t *d = vd;
uint8_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] += n[i * 4 + 0] * m[i * 4 + 0]
+ n[i * 4 + 1] * m[i * 4 + 1]
+ n[i * 4 + 2] * m[i * 4 + 2]
+ n[i * 4 + 3] * m[i * 4 + 3];
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd;
int16_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
+ (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
+ (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
+ (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd;
uint16_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
+ (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
+ (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
+ (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
intptr_t index = simd_data(desc);
uint32_t *d = vd;
int8_t *n = vn;
int8_t *m_indexed = (int8_t *)vm + H4(index) * 4;
/* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
* Otherwise opr_sz is a multiple of 16.
*/
segend = MIN(4, opr_sz_4);
i = 0;
do {
int8_t m0 = m_indexed[i * 4 + 0];
int8_t m1 = m_indexed[i * 4 + 1];
int8_t m2 = m_indexed[i * 4 + 2];
int8_t m3 = m_indexed[i * 4 + 3];
do {
d[i] += n[i * 4 + 0] * m0
+ n[i * 4 + 1] * m1
+ n[i * 4 + 2] * m2
+ n[i * 4 + 3] * m3;
} while (++i < segend);
segend = i + 4;
} while (i < opr_sz_4);
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
intptr_t index = simd_data(desc);
uint32_t *d = vd;
uint8_t *n = vn;
uint8_t *m_indexed = (uint8_t *)vm + H4(index) * 4;
/* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
* Otherwise opr_sz is a multiple of 16.
*/
segend = MIN(4, opr_sz_4);
i = 0;
do {
uint8_t m0 = m_indexed[i * 4 + 0];
uint8_t m1 = m_indexed[i * 4 + 1];
uint8_t m2 = m_indexed[i * 4 + 2];
uint8_t m3 = m_indexed[i * 4 + 3];
do {
d[i] += n[i * 4 + 0] * m0
+ n[i * 4 + 1] * m1
+ n[i * 4 + 2] * m2
+ n[i * 4 + 3] * m3;
} while (++i < segend);
segend = i + 4;
} while (i < opr_sz_4);
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
intptr_t index = simd_data(desc);
uint64_t *d = vd;
int16_t *n = vn;
int16_t *m_indexed = (int16_t *)vm + index * 4;
/* This is supported by SVE only, so opr_sz is always a multiple of 16.
* Process the entire segment all at once, writing back the results
* only after we've consumed all of the inputs.
*/
for (i = 0; i < opr_sz_8 ; i += 2) {
uint64_t d0, d1;
d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
d[i + 0] += d0;
d[i + 1] += d1;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
intptr_t index = simd_data(desc);
uint64_t *d = vd;
uint16_t *n = vn;
uint16_t *m_indexed = (uint16_t *)vm + index * 4;
/* This is supported by SVE only, so opr_sz is always a multiple of 16.
* Process the entire segment all at once, writing back the results
* only after we've consumed all of the inputs.
*/
for (i = 0; i < opr_sz_8 ; i += 2) {
uint64_t d0, d1;
d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
d[i + 0] += d0;
d[i + 1] += d1;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd;
float16 *n = vn;
float16 *m = vm;
float_status *fpst = vfpst;
uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < opr_sz / 2; i += 2) {
float16 e0 = n[H2(i)];
float16 e1 = m[H2(i + 1)] ^ neg_imag;
float16 e2 = n[H2(i + 1)];
float16 e3 = m[H2(i)] ^ neg_real;
d[H2(i)] = float16_add(e0, e1, fpst);
d[H2(i + 1)] = float16_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd;
float32 *n = vn;
float32 *m = vm;
float_status *fpst = vfpst;
uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < opr_sz / 4; i += 2) {
float32 e0 = n[H4(i)];
float32 e1 = m[H4(i + 1)] ^ neg_imag;
float32 e2 = n[H4(i + 1)];
float32 e3 = m[H4(i)] ^ neg_real;
d[H4(i)] = float32_add(e0, e1, fpst);
d[H4(i + 1)] = float32_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float64 *d = vd;
float64 *n = vn;
float64 *m = vm;
float_status *fpst = vfpst;
uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
uint64_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 63;
neg_imag <<= 63;
for (i = 0; i < opr_sz / 8; i += 2) {
float64 e0 = n[i];
float64 e1 = m[i + 1] ^ neg_imag;
float64 e2 = n[i + 1];
float64 e3 = m[i] ^ neg_real;
d[i] = float64_add(e0, e1, fpst);
d[i + 1] = float64_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd;
float16 *n = vn;
float16 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint32_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < opr_sz / 2; i += 2) {
float16 e2 = n[H2(i + flip)];
float16 e1 = m[H2(i + flip)] ^ neg_real;
float16 e4 = e2;
float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd;
float16 *n = vn;
float16 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
uint32_t neg_real = flip ^ neg_imag;
intptr_t elements = opr_sz / sizeof(float16);
intptr_t eltspersegment = 16 / sizeof(float16);
intptr_t i, j;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < elements; i += eltspersegment) {
float16 mr = m[H2(i + 2 * index + 0)];
float16 mi = m[H2(i + 2 * index + 1)];
float16 e1 = neg_real ^ (flip ? mi : mr);
float16 e3 = neg_imag ^ (flip ? mr : mi);
for (j = i; j < i + eltspersegment; j += 2) {
float16 e2 = n[H2(j + flip)];
float16 e4 = e2;
d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
}
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd;
float32 *n = vn;
float32 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint32_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < opr_sz / 4; i += 2) {
float32 e2 = n[H4(i + flip)];
float32 e1 = m[H4(i + flip)] ^ neg_real;
float32 e4 = e2;
float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd;
float32 *n = vn;
float32 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
uint32_t neg_real = flip ^ neg_imag;
intptr_t elements = opr_sz / sizeof(float32);
intptr_t eltspersegment = 16 / sizeof(float32);
intptr_t i, j;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < elements; i += eltspersegment) {
float32 mr = m[H4(i + 2 * index + 0)];
float32 mi = m[H4(i + 2 * index + 1)];
float32 e1 = neg_real ^ (flip ? mi : mr);
float32 e3 = neg_imag ^ (flip ? mr : mi);
for (j = i; j < i + eltspersegment; j += 2) {
float32 e2 = n[H4(j + flip)];
float32 e4 = e2;
d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
}
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float64 *d = vd;
float64 *n = vn;
float64 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint64_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 63;
neg_imag <<= 63;
for (i = 0; i < opr_sz / 8; i += 2) {
float64 e2 = n[i + flip];
float64 e1 = m[i + flip] ^ neg_real;
float64 e4 = e2;
float64 e3 = m[i + 1 - flip] ^ neg_imag;
d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/*
* Floating point comparisons producing an integer result (all 1s or all 0s).
* Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
* Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
*/
static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat)
{
return -float16_eq_quiet(op1, op2, stat);
}
static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat)
{
return -float32_eq_quiet(op1, op2, stat);
}
static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat)
{
return -float16_le(op2, op1, stat);
}
static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat)
{
return -float32_le(op2, op1, stat);
}
static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat)
{
return -float16_lt(op2, op1, stat);
}
static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat)
{
return -float32_lt(op2, op1, stat);
}
static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat)
{
return -float16_le(float16_abs(op2), float16_abs(op1), stat);
}
static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat)
{
return -float32_le(float32_abs(op2), float32_abs(op1), stat);
}
static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat)
{
return -float16_lt(float16_abs(op2), float16_abs(op1), stat);
}
static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat)
{
return -float32_lt(float32_abs(op2), float32_abs(op1), stat);
}
static int16_t vfp_tosszh(float16 x, void *fpstp)
{
float_status *fpst = fpstp;
if (float16_is_any_nan(x)) {
float_raise(float_flag_invalid, fpst);
return 0;
}
return float16_to_int16_round_to_zero(x, fpst);
}
static uint16_t vfp_touszh(float16 x, void *fpstp)
{
float_status *fpst = fpstp;
if (float16_is_any_nan(x)) {
float_raise(float_flag_invalid, fpst);
return 0;
}
return float16_to_uint16_round_to_zero(x, fpst);
}
#define DO_2OP(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], stat); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
DO_2OP(gvec_vrintx_h, float16_round_to_int, float16)
DO_2OP(gvec_vrintx_s, float32_round_to_int, float32)
DO_2OP(gvec_sitos, helper_vfp_sitos, int32_t)
DO_2OP(gvec_uitos, helper_vfp_uitos, uint32_t)
DO_2OP(gvec_tosizs, helper_vfp_tosizs, float32)
DO_2OP(gvec_touizs, helper_vfp_touizs, float32)
DO_2OP(gvec_sstoh, int16_to_float16, int16_t)
DO_2OP(gvec_ustoh, uint16_to_float16, uint16_t)
DO_2OP(gvec_tosszh, vfp_tosszh, float16)
DO_2OP(gvec_touszh, vfp_touszh, float16)
#define WRAP_CMP0_FWD(FN, CMPOP, TYPE) \
static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \
{ \
return TYPE##_##CMPOP(op, TYPE##_zero, stat); \
}
#define WRAP_CMP0_REV(FN, CMPOP, TYPE) \
static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \
{ \
return TYPE##_##CMPOP(TYPE##_zero, op, stat); \
}
#define DO_2OP_CMP0(FN, CMPOP, DIRN) \
WRAP_CMP0_##DIRN(FN, CMPOP, float16) \
WRAP_CMP0_##DIRN(FN, CMPOP, float32) \
DO_2OP(gvec_f##FN##0_h, float16_##FN##0, float16) \
DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32)
DO_2OP_CMP0(cgt, cgt, FWD)
DO_2OP_CMP0(cge, cge, FWD)
DO_2OP_CMP0(ceq, ceq, FWD)
DO_2OP_CMP0(clt, cgt, REV)
DO_2OP_CMP0(cle, cge, REV)
#undef DO_2OP
#undef DO_2OP_CMP0
/* Floating-point trigonometric starting value.
* See the ARM ARM pseudocode function FPTrigSMul.
*/
static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
{
float16 result = float16_mul(op1, op1, stat);
if (!float16_is_any_nan(result)) {
result = float16_set_sign(result, op2 & 1);
}
return result;
}
static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
{
float32 result = float32_mul(op1, op1, stat);
if (!float32_is_any_nan(result)) {
result = float32_set_sign(result, op2 & 1);
}
return result;
}
static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
{
float64 result = float64_mul(op1, op1, stat);
if (!float64_is_any_nan(result)) {
result = float64_set_sign(result, op2 & 1);
}
return result;
}
static float16 float16_abd(float16 op1, float16 op2, float_status *stat)
{
return float16_abs(float16_sub(op1, op2, stat));
}
static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
{
return float32_abs(float32_sub(op1, op2, stat));
}
/*
* Reciprocal step. These are the AArch32 version which uses a
* non-fused multiply-and-subtract.
*/
static float16 float16_recps_nf(float16 op1, float16 op2, float_status *stat)
{
op1 = float16_squash_input_denormal(op1, stat);
op2 = float16_squash_input_denormal(op2, stat);
if ((float16_is_infinity(op1) && float16_is_zero(op2)) ||
(float16_is_infinity(op2) && float16_is_zero(op1))) {
return float16_two;
}
return float16_sub(float16_two, float16_mul(op1, op2, stat), stat);
}
static float32 float32_recps_nf(float32 op1, float32 op2, float_status *stat)
{
op1 = float32_squash_input_denormal(op1, stat);
op2 = float32_squash_input_denormal(op2, stat);
if ((float32_is_infinity(op1) && float32_is_zero(op2)) ||
(float32_is_infinity(op2) && float32_is_zero(op1))) {
return float32_two;
}
return float32_sub(float32_two, float32_mul(op1, op2, stat), stat);
}
/* Reciprocal square-root step. AArch32 non-fused semantics. */
static float16 float16_rsqrts_nf(float16 op1, float16 op2, float_status *stat)
{
op1 = float16_squash_input_denormal(op1, stat);
op2 = float16_squash_input_denormal(op2, stat);
if ((float16_is_infinity(op1) && float16_is_zero(op2)) ||
(float16_is_infinity(op2) && float16_is_zero(op1))) {
return float16_one_point_five;
}
op1 = float16_sub(float16_three, float16_mul(op1, op2, stat), stat);
return float16_div(op1, float16_two, stat);
}
static float32 float32_rsqrts_nf(float32 op1, float32 op2, float_status *stat)
{
op1 = float32_squash_input_denormal(op1, stat);
op2 = float32_squash_input_denormal(op2, stat);
if ((float32_is_infinity(op1) && float32_is_zero(op2)) ||
(float32_is_infinity(op2) && float32_is_zero(op1))) {
return float32_one_point_five;
}
op1 = float32_sub(float32_three, float32_mul(op1, op2, stat), stat);
return float32_div(op1, float32_two, stat);
}
#define DO_3OP(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], m[i], stat); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_3OP(gvec_fadd_h, float16_add, float16)
DO_3OP(gvec_fadd_s, float32_add, float32)
DO_3OP(gvec_fadd_d, float64_add, float64)
DO_3OP(gvec_fsub_h, float16_sub, float16)
DO_3OP(gvec_fsub_s, float32_sub, float32)
DO_3OP(gvec_fsub_d, float64_sub, float64)
DO_3OP(gvec_fmul_h, float16_mul, float16)
DO_3OP(gvec_fmul_s, float32_mul, float32)
DO_3OP(gvec_fmul_d, float64_mul, float64)
DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
DO_3OP(gvec_fabd_h, float16_abd, float16)
DO_3OP(gvec_fabd_s, float32_abd, float32)
DO_3OP(gvec_fceq_h, float16_ceq, float16)
DO_3OP(gvec_fceq_s, float32_ceq, float32)
DO_3OP(gvec_fcge_h, float16_cge, float16)
DO_3OP(gvec_fcge_s, float32_cge, float32)
DO_3OP(gvec_fcgt_h, float16_cgt, float16)
DO_3OP(gvec_fcgt_s, float32_cgt, float32)
DO_3OP(gvec_facge_h, float16_acge, float16)
DO_3OP(gvec_facge_s, float32_acge, float32)
DO_3OP(gvec_facgt_h, float16_acgt, float16)
DO_3OP(gvec_facgt_s, float32_acgt, float32)
DO_3OP(gvec_fmax_h, float16_max, float16)
DO_3OP(gvec_fmax_s, float32_max, float32)
DO_3OP(gvec_fmin_h, float16_min, float16)
DO_3OP(gvec_fmin_s, float32_min, float32)
DO_3OP(gvec_fmaxnum_h, float16_maxnum, float16)
DO_3OP(gvec_fmaxnum_s, float32_maxnum, float32)
DO_3OP(gvec_fminnum_h, float16_minnum, float16)
DO_3OP(gvec_fminnum_s, float32_minnum, float32)
DO_3OP(gvec_recps_nf_h, float16_recps_nf, float16)
DO_3OP(gvec_recps_nf_s, float32_recps_nf, float32)
DO_3OP(gvec_rsqrts_nf_h, float16_rsqrts_nf, float16)
DO_3OP(gvec_rsqrts_nf_s, float32_rsqrts_nf, float32)
#ifdef TARGET_AARCH64
DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
#endif
#undef DO_3OP
/* Non-fused multiply-add (unlike float16_muladd etc, which are fused) */
static float16 float16_muladd_nf(float16 dest, float16 op1, float16 op2,
float_status *stat)
{
return float16_add(dest, float16_mul(op1, op2, stat), stat);
}
static float32 float32_muladd_nf(float32 dest, float32 op1, float32 op2,
float_status *stat)
{
return float32_add(dest, float32_mul(op1, op2, stat), stat);
}
static float16 float16_mulsub_nf(float16 dest, float16 op1, float16 op2,
float_status *stat)
{
return float16_sub(dest, float16_mul(op1, op2, stat), stat);
}
static float32 float32_mulsub_nf(float32 dest, float32 op1, float32 op2,
float_status *stat)
{
return float32_sub(dest, float32_mul(op1, op2, stat), stat);
}
/* Fused versions; these have the semantics Neon VFMA/VFMS want */
static float16 float16_muladd_f(float16 dest, float16 op1, float16 op2,
float_status *stat)
{
return float16_muladd(op1, op2, dest, 0, stat);
}
static float32 float32_muladd_f(float32 dest, float32 op1, float32 op2,
float_status *stat)
{
return float32_muladd(op1, op2, dest, 0, stat);
}
static float16 float16_mulsub_f(float16 dest, float16 op1, float16 op2,
float_status *stat)
{
return float16_muladd(float16_chs(op1), op2, dest, 0, stat);
}
static float32 float32_mulsub_f(float32 dest, float32 op1, float32 op2,
float_status *stat)
{
return float32_muladd(float32_chs(op1), op2, dest, 0, stat);
}
#define DO_MULADD(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(d[i], n[i], m[i], stat); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_MULADD(gvec_fmla_h, float16_muladd_nf, float16)
DO_MULADD(gvec_fmla_s, float32_muladd_nf, float32)
DO_MULADD(gvec_fmls_h, float16_mulsub_nf, float16)
DO_MULADD(gvec_fmls_s, float32_mulsub_nf, float32)
DO_MULADD(gvec_vfma_h, float16_muladd_f, float16)
DO_MULADD(gvec_vfma_s, float32_muladd_f, float32)
DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16)
DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32)
/* For the indexed ops, SVE applies the index per 128-bit vector segment.
* For AdvSIMD, there is of course only one such vector segment.
*/
#define DO_MUL_IDX(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
intptr_t idx = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = n[i + j] * mm; \
} \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2)
DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4)
DO_MUL_IDX(gvec_mul_idx_d, uint64_t, )
#undef DO_MUL_IDX
#define DO_MLA_IDX(NAME, TYPE, OP, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
intptr_t idx = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm, *a = va; \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = a[i + j] OP n[i + j] * mm; \
} \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2)
DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4)
DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +, )
DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2)
DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4)
DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -, )
#undef DO_MLA_IDX
#define DO_FMUL_IDX(NAME, ADD, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
intptr_t idx = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = TYPE##_##ADD(d[i + j], \
TYPE##_mul(n[i + j], mm, stat), stat); \
} \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
#define float16_nop(N, M, S) (M)
#define float32_nop(N, M, S) (M)
#define float64_nop(N, M, S) (M)
DO_FMUL_IDX(gvec_fmul_idx_h, nop, float16, H2)
DO_FMUL_IDX(gvec_fmul_idx_s, nop, float32, H4)
DO_FMUL_IDX(gvec_fmul_idx_d, nop, float64, )
/*
* Non-fused multiply-accumulate operations, for Neon. NB that unlike
* the fused ops below they assume accumulate both from and into Vd.
*/
DO_FMUL_IDX(gvec_fmla_nf_idx_h, add, float16, H2)
DO_FMUL_IDX(gvec_fmla_nf_idx_s, add, float32, H4)
DO_FMUL_IDX(gvec_fmls_nf_idx_h, sub, float16, H2)
DO_FMUL_IDX(gvec_fmls_nf_idx_s, sub, float32, H4)
#undef float16_nop
#undef float32_nop
#undef float64_nop
#undef DO_FMUL_IDX
#define DO_FMLA_IDX(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
void *stat, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
TYPE *d = vd, *n = vn, *m = vm, *a = va; \
op1_neg <<= (8 * sizeof(TYPE) - 1); \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
mm, a[i + j], 0, stat); \
} \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
#undef DO_FMLA_IDX
#define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPEN *d = vd, *n = vn; TYPEM *m = vm; \
bool q = false; \
for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \
WTYPE dd = (WTYPE)n[i] OP m[i]; \
if (dd < MIN) { \
dd = MIN; \
q = true; \
} else if (dd > MAX) { \
dd = MAX; \
q = true; \
} \
d[i] = dd; \
} \
if (q) { \
uint32_t *qc = vq; \
qc[0] = 1; \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
#undef DO_SAT
void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
void *vm, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
bool q = false;
for (i = 0; i < oprsz / 8; i++) {
uint64_t nn = n[i], mm = m[i], dd = nn + mm;
if (dd < nn) {
dd = UINT64_MAX;
q = true;
}
d[i] = dd;
}
if (q) {
uint32_t *qc = vq;
qc[0] = 1;
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
void *vm, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
bool q = false;
for (i = 0; i < oprsz / 8; i++) {
uint64_t nn = n[i], mm = m[i], dd = nn - mm;
if (nn < mm) {
dd = 0;
q = true;
}
d[i] = dd;
}
if (q) {
uint32_t *qc = vq;
qc[0] = 1;
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
void *vm, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
int64_t *d = vd, *n = vn, *m = vm;
bool q = false;
for (i = 0; i < oprsz / 8; i++) {
int64_t nn = n[i], mm = m[i], dd = nn + mm;
if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
dd = (nn >> 63) ^ ~INT64_MIN;
q = true;
}
d[i] = dd;
}
if (q) {
uint32_t *qc = vq;
qc[0] = 1;
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
void *vm, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
int64_t *d = vd, *n = vn, *m = vm;
bool q = false;
for (i = 0; i < oprsz / 8; i++) {
int64_t nn = n[i], mm = m[i], dd = nn - mm;
if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
dd = (nn >> 63) ^ ~INT64_MIN;
q = true;
}
d[i] = dd;
}
if (q) {
uint32_t *qc = vq;
qc[0] = 1;
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
#define DO_SRA(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] += n[i] >> shift; \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_SRA(gvec_ssra_b, int8_t)
DO_SRA(gvec_ssra_h, int16_t)
DO_SRA(gvec_ssra_s, int32_t)
DO_SRA(gvec_ssra_d, int64_t)
DO_SRA(gvec_usra_b, uint8_t)
DO_SRA(gvec_usra_h, uint16_t)
DO_SRA(gvec_usra_s, uint32_t)
DO_SRA(gvec_usra_d, uint64_t)
#undef DO_SRA
#define DO_RSHR(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
TYPE tmp = n[i] >> (shift - 1); \
d[i] = (tmp >> 1) + (tmp & 1); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_RSHR(gvec_srshr_b, int8_t)
DO_RSHR(gvec_srshr_h, int16_t)
DO_RSHR(gvec_srshr_s, int32_t)
DO_RSHR(gvec_srshr_d, int64_t)
DO_RSHR(gvec_urshr_b, uint8_t)
DO_RSHR(gvec_urshr_h, uint16_t)
DO_RSHR(gvec_urshr_s, uint32_t)
DO_RSHR(gvec_urshr_d, uint64_t)
#undef DO_RSHR
#define DO_RSRA(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
TYPE tmp = n[i] >> (shift - 1); \
d[i] += (tmp >> 1) + (tmp & 1); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_RSRA(gvec_srsra_b, int8_t)
DO_RSRA(gvec_srsra_h, int16_t)
DO_RSRA(gvec_srsra_s, int32_t)
DO_RSRA(gvec_srsra_d, int64_t)
DO_RSRA(gvec_ursra_b, uint8_t)
DO_RSRA(gvec_ursra_h, uint16_t)
DO_RSRA(gvec_ursra_s, uint32_t)
DO_RSRA(gvec_ursra_d, uint64_t)
#undef DO_RSRA
#define DO_SRI(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_SRI(gvec_sri_b, uint8_t)
DO_SRI(gvec_sri_h, uint16_t)
DO_SRI(gvec_sri_s, uint32_t)
DO_SRI(gvec_sri_d, uint64_t)
#undef DO_SRI
#define DO_SLI(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_SLI(gvec_sli_b, uint8_t)
DO_SLI(gvec_sli_h, uint16_t)
DO_SLI(gvec_sli_s, uint32_t)
DO_SLI(gvec_sli_d, uint64_t)
#undef DO_SLI
/*
* Convert float16 to float32, raising no exceptions and
* preserving exceptional values, including SNaN.
* This is effectively an unpack+repack operation.
*/
static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
{
const int f16_bias = 15;
const int f32_bias = 127;
uint32_t sign = extract32(f16, 15, 1);
uint32_t exp = extract32(f16, 10, 5);
uint32_t frac = extract32(f16, 0, 10);
if (exp == 0x1f) {
/* Inf or NaN */
exp = 0xff;
} else if (exp == 0) {
/* Zero or denormal. */
if (frac != 0) {
if (fz16) {
frac = 0;
} else {
/*
* Denormal; these are all normal float32.
* Shift the fraction so that the msb is at bit 11,
* then remove bit 11 as the implicit bit of the
* normalized float32. Note that we still go through
* the shift for normal numbers below, to put the
* float32 fraction at the right place.
*/
int shift = clz32(frac) - 21;
frac = (frac << shift) & 0x3ff;
exp = f32_bias - f16_bias - shift + 1;
}
}
} else {
/* Normal number; adjust the bias. */
exp += f32_bias - f16_bias;
}
sign <<= 31;
exp <<= 23;
frac <<= 23 - 10;
return sign | exp | frac;
}
static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
{
/*
* Branchless load of u32[0], u64[0], u32[1], or u64[1].
* Load the 2nd qword iff is_q & is_2.
* Shift to the 2nd dword iff !is_q & is_2.
* For !is_q & !is_2, the upper bits of the result are garbage.
*/
return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
}
/*
* Note that FMLAL requires oprsz == 8 or oprsz == 16,
* as there is not yet SVE versions that might use blocking.
*/
static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
uint32_t desc, bool fz16)
{
intptr_t i, oprsz = simd_oprsz(desc);
int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
int is_q = oprsz == 16;
uint64_t n_4, m_4;
/* Pre-load all of the f16 data, avoiding overlap issues. */
n_4 = load4_f16(vn, is_q, is_2);
m_4 = load4_f16(vm, is_q, is_2);
/* Negate all inputs for FMLSL at once. */
if (is_s) {
n_4 ^= 0x8000800080008000ull;
}
for (i = 0; i < oprsz / 4; i++) {
float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
void *venv, uint32_t desc)
{
CPUARMState *env = venv;
do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
}
void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
void *venv, uint32_t desc)
{
CPUARMState *env = venv;
do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
}
static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
uint32_t desc, bool fz16)
{
intptr_t i, oprsz = simd_oprsz(desc);
int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
int is_q = oprsz == 16;
uint64_t n_4;
float32 m_1;
/* Pre-load all of the f16 data, avoiding overlap issues. */
n_4 = load4_f16(vn, is_q, is_2);
/* Negate all inputs for FMLSL at once. */
if (is_s) {
n_4 ^= 0x8000800080008000ull;
}
m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
for (i = 0; i < oprsz / 4; i++) {
float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
void *venv, uint32_t desc)
{
CPUARMState *env = venv;
do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
}
void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
void *venv, uint32_t desc)
{
CPUARMState *env = venv;
do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
}
void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int8_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
int8_t mm = m[i];
int8_t nn = n[i];
int8_t res = 0;
if (mm >= 0) {
if (mm < 8) {
res = nn << mm;
}
} else {
res = nn >> (mm > -8 ? -mm : 7);
}
d[i] = res;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
int8_t mm = m[i]; /* only 8 bits of shift are significant */
int16_t nn = n[i];
int16_t res = 0;
if (mm >= 0) {
if (mm < 16) {
res = nn << mm;
}
} else {
res = nn >> (mm > -16 ? -mm : 15);
}
d[i] = res;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint8_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
int8_t mm = m[i];
uint8_t nn = n[i];
uint8_t res = 0;
if (mm >= 0) {
if (mm < 8) {
res = nn << mm;
}
} else {
if (mm > -8) {
res = nn >> -mm;
}
}
d[i] = res;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
int8_t mm = m[i]; /* only 8 bits of shift are significant */
uint16_t nn = n[i];
uint16_t res = 0;
if (mm >= 0) {
if (mm < 16) {
res = nn << mm;
}
} else {
if (mm > -16) {
res = nn >> -mm;
}
}
d[i] = res;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/*
* 8x8->8 polynomial multiply.
*
* Polynomial multiplication is like integer multiplication except the
* partial products are XORed, not added.
*
* TODO: expose this as a generic vector operation, as it is a common
* crypto building block.
*/
void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
uint64_t nn = n[i];
uint64_t mm = m[i];
uint64_t rr = 0;
for (j = 0; j < 8; ++j) {
uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
rr ^= mm & mask;
mm = (mm << 1) & 0xfefefefefefefefeull;
nn >>= 1;
}
d[i] = rr;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/*
* 64x64->128 polynomial multiply.
* Because of the lanes are not accessed in strict columns,
* this probably cannot be turned into a generic helper.
*/
void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
intptr_t hi = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; i += 2) {
uint64_t nn = n[i + hi];
uint64_t mm = m[i + hi];
uint64_t rhi = 0;
uint64_t rlo = 0;
/* Bit 0 can only influence the low 64-bit result. */
if (nn & 1) {
rlo = mm;
}
for (j = 1; j < 64; ++j) {
uint64_t mask = -((nn >> j) & 1);
rlo ^= (mm << j) & mask;
rhi ^= (mm >> (64 - j)) & mask;
}
d[i] = rlo;
d[i + 1] = rhi;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/*
* 8x8->16 polynomial multiply.
*
* The byte inputs are expanded to (or extracted from) half-words.
* Note that neon and sve2 get the inputs from different positions.
* This allows 4 bytes to be processed in parallel with uint64_t.
*/
static uint64_t expand_byte_to_half(uint64_t x)
{
return (x & 0x000000ff)
| ((x & 0x0000ff00) << 8)
| ((x & 0x00ff0000) << 16)
| ((x & 0xff000000) << 24);
}
static uint64_t pmull_h(uint64_t op1, uint64_t op2)
{
uint64_t result = 0;
int i;
for (i = 0; i < 8; ++i) {
uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
result ^= op2 & mask;
op1 >>= 1;
op2 <<= 1;
}
return result;
}
void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
int hi = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t nn = n[hi], mm = m[hi];
d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
nn >>= 32;
mm >>= 32;
d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
clear_tail(d, 16, simd_maxsz(desc));
}
#ifdef TARGET_AARCH64
void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
int shift = simd_data(desc) * 8;
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
d[i] = pmull_h(nn, mm);
}
}
#endif
#define DO_CMP0(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
TYPE nn = *(TYPE *)(vn + i); \
*(TYPE *)(vd + i) = -(nn OP 0); \
} \
clear_tail(vd, opr_sz, simd_maxsz(desc)); \
}
DO_CMP0(gvec_ceq0_b, int8_t, ==)
DO_CMP0(gvec_clt0_b, int8_t, <)
DO_CMP0(gvec_cle0_b, int8_t, <=)
DO_CMP0(gvec_cgt0_b, int8_t, >)
DO_CMP0(gvec_cge0_b, int8_t, >=)
DO_CMP0(gvec_ceq0_h, int16_t, ==)
DO_CMP0(gvec_clt0_h, int16_t, <)
DO_CMP0(gvec_cle0_h, int16_t, <=)
DO_CMP0(gvec_cgt0_h, int16_t, >)
DO_CMP0(gvec_cge0_h, int16_t, >=)
#undef DO_CMP0
#define DO_ABD(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
\
for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
} \
clear_tail(d, opr_sz, simd_maxsz(desc)); \
}
DO_ABD(gvec_sabd_b, int8_t)
DO_ABD(gvec_sabd_h, int16_t)
DO_ABD(gvec_sabd_s, int32_t)
DO_ABD(gvec_sabd_d, int64_t)
DO_ABD(gvec_uabd_b, uint8_t)
DO_ABD(gvec_uabd_h, uint16_t)
DO_ABD(gvec_uabd_s, uint32_t)
DO_ABD(gvec_uabd_d, uint64_t)
#undef DO_ABD
#define DO_ABA(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
\
for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
} \
clear_tail(d, opr_sz, simd_maxsz(desc)); \
}
DO_ABA(gvec_saba_b, int8_t)
DO_ABA(gvec_saba_h, int16_t)
DO_ABA(gvec_saba_s, int32_t)
DO_ABA(gvec_saba_d, int64_t)
DO_ABA(gvec_uaba_b, uint8_t)
DO_ABA(gvec_uaba_h, uint16_t)
DO_ABA(gvec_uaba_s, uint32_t)
DO_ABA(gvec_uaba_d, uint64_t)
#undef DO_ABA
#define DO_NEON_PAIRWISE(NAME, OP) \
void HELPER(NAME##s)(void *vd, void *vn, void *vm, \
void *stat, uint32_t oprsz) \
{ \
float_status *fpst = stat; \
float32 *d = vd; \
float32 *n = vn; \
float32 *m = vm; \
float32 r0, r1; \
\
/* Read all inputs before writing outputs in case vm == vd */ \
r0 = float32_##OP(n[H4(0)], n[H4(1)], fpst); \
r1 = float32_##OP(m[H4(0)], m[H4(1)], fpst); \
\
d[H4(0)] = r0; \
d[H4(1)] = r1; \
} \
\
void HELPER(NAME##h)(void *vd, void *vn, void *vm, \
void *stat, uint32_t oprsz) \
{ \
float_status *fpst = stat; \
float16 *d = vd; \
float16 *n = vn; \
float16 *m = vm; \
float16 r0, r1, r2, r3; \
\
/* Read all inputs before writing outputs in case vm == vd */ \
r0 = float16_##OP(n[H2(0)], n[H2(1)], fpst); \
r1 = float16_##OP(n[H2(2)], n[H2(3)], fpst); \
r2 = float16_##OP(m[H2(0)], m[H2(1)], fpst); \
r3 = float16_##OP(m[H2(2)], m[H2(3)], fpst); \
\
d[H2(0)] = r0; \
d[H2(1)] = r1; \
d[H2(2)] = r2; \
d[H2(3)] = r3; \
}
DO_NEON_PAIRWISE(neon_padd, add)
DO_NEON_PAIRWISE(neon_pmax, max)
DO_NEON_PAIRWISE(neon_pmin, min)
#undef DO_NEON_PAIRWISE
#define DO_VCVT_FIXED(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
float_status *fpst = stat; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], shift, fpst); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_VCVT_FIXED(gvec_vcvt_sf, helper_vfp_sltos, uint32_t)
DO_VCVT_FIXED(gvec_vcvt_uf, helper_vfp_ultos, uint32_t)
DO_VCVT_FIXED(gvec_vcvt_fs, helper_vfp_tosls_round_to_zero, uint32_t)
DO_VCVT_FIXED(gvec_vcvt_fu, helper_vfp_touls_round_to_zero, uint32_t)
DO_VCVT_FIXED(gvec_vcvt_sh, helper_vfp_shtoh, uint16_t)
DO_VCVT_FIXED(gvec_vcvt_uh, helper_vfp_uhtoh, uint16_t)
DO_VCVT_FIXED(gvec_vcvt_hs, helper_vfp_toshh_round_to_zero, uint16_t)
DO_VCVT_FIXED(gvec_vcvt_hu, helper_vfp_touhh_round_to_zero, uint16_t)
#undef DO_VCVT_FIXED
#define DO_VCVT_RMODE(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
float_status *fpst = stat; \
intptr_t i, oprsz = simd_oprsz(desc); \
uint32_t rmode = simd_data(desc); \
uint32_t prev_rmode = get_float_rounding_mode(fpst); \
TYPE *d = vd, *n = vn; \
set_float_rounding_mode(rmode, fpst); \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], 0, fpst); \
} \
set_float_rounding_mode(prev_rmode, fpst); \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_VCVT_RMODE(gvec_vcvt_rm_ss, helper_vfp_tosls, uint32_t)
DO_VCVT_RMODE(gvec_vcvt_rm_us, helper_vfp_touls, uint32_t)
DO_VCVT_RMODE(gvec_vcvt_rm_sh, helper_vfp_toshh, uint16_t)
DO_VCVT_RMODE(gvec_vcvt_rm_uh, helper_vfp_touhh, uint16_t)
#undef DO_VCVT_RMODE
#define DO_VRINT_RMODE(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
float_status *fpst = stat; \
intptr_t i, oprsz = simd_oprsz(desc); \
uint32_t rmode = simd_data(desc); \
uint32_t prev_rmode = get_float_rounding_mode(fpst); \
TYPE *d = vd, *n = vn; \
set_float_rounding_mode(rmode, fpst); \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], fpst); \
} \
set_float_rounding_mode(prev_rmode, fpst); \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_VRINT_RMODE(gvec_vrint_rm_h, helper_rinth, uint16_t)
DO_VRINT_RMODE(gvec_vrint_rm_s, helper_rints, uint32_t)
#undef DO_VRINT_RMODE