yuzu-android/src/audio_core/sink/sink_stream.cpp
Billy Laws 0afb9631b5 Add some explicit latency to sample count reporting
Some games have very tight scheduling requirements for their audio which can't really be matched on the host, adding a constant to the reported value helps to provide some leeway.
2023-04-03 23:11:36 +01:00

280 lines
11 KiB
C++

// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <atomic>
#include <memory>
#include <span>
#include <vector>
#include "audio_core/audio_core.h"
#include "audio_core/common/common.h"
#include "audio_core/sink/sink_stream.h"
#include "common/common_types.h"
#include "common/fixed_point.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
namespace AudioCore::Sink {
void SinkStream::AppendBuffer(SinkBuffer& buffer, std::vector<s16>& samples) {
if (type == StreamType::In) {
queue.enqueue(buffer);
queued_buffers++;
return;
}
constexpr s32 min{std::numeric_limits<s16>::min()};
constexpr s32 max{std::numeric_limits<s16>::max()};
auto yuzu_volume{Settings::Volume()};
if (yuzu_volume > 1.0f) {
yuzu_volume = 0.6f + 20 * std::log10(yuzu_volume);
}
auto volume{system_volume * device_volume * yuzu_volume};
if (system_channels == 6 && device_channels == 2) {
// We're given 6 channels, but our device only outputs 2, so downmix.
static constexpr std::array<f32, 4> down_mix_coeff{1.0f, 0.707f, 0.251f, 0.707f};
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] * down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] * down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackLeft)] * down_mix_coeff[3]) *
volume)
.to_int()};
const auto right_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] * down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] * down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackRight)] * down_mix_coeff[3]) *
volume)
.to_int()};
samples[write_index + static_cast<u32>(Channels::FrontLeft)] =
static_cast<s16>(std::clamp(left_sample, min, max));
samples[write_index + static_cast<u32>(Channels::FrontRight)] =
static_cast<s16>(std::clamp(right_sample, min, max));
}
samples.resize(samples.size() / system_channels * device_channels);
} else if (system_channels == 2 && device_channels == 6) {
// We need moar samples! Not all games will provide 6 channel audio.
// TODO: Implement some upmixing here. Currently just passthrough, with other
// channels left as silence.
std::vector<s16> new_samples(samples.size() / system_channels * device_channels, 0);
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontLeft)] = left_sample;
const auto right_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontRight)] = right_sample;
}
samples = std::move(new_samples);
} else if (volume != 1.0f) {
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
}
samples_buffer.Push(samples);
queue.enqueue(buffer);
queued_buffers++;
}
std::vector<s16> SinkStream::ReleaseBuffer(u64 num_samples) {
constexpr s32 min = std::numeric_limits<s16>::min();
constexpr s32 max = std::numeric_limits<s16>::max();
auto samples{samples_buffer.Pop(num_samples)};
// TODO: Up-mix to 6 channels if the game expects it.
// For audio input this is unlikely to ever be the case though.
// Incoming mic volume seems to always be very quiet, so multiply by an additional 8 here.
// TODO: Play with this and find something that works better.
auto volume{system_volume * device_volume * 8};
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
if (samples.size() < num_samples) {
samples.resize(num_samples, 0);
}
return samples;
}
void SinkStream::ClearQueue() {
samples_buffer.Pop();
while (queue.pop()) {
}
queued_buffers = 0;
playing_buffer = {};
playing_buffer.consumed = true;
}
void SinkStream::ProcessAudioIn(std::span<const s16> input_buffer, std::size_t num_frames) {
const std::size_t num_channels = GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
size_t frames_written{0};
// If we're paused or going to shut down, we don't want to consume buffers as coretiming is
// paused and we'll desync, so just return.
if (system.IsPaused() || system.IsShuttingDown()) {
return;
}
while (frames_written < num_frames) {
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!queue.try_dequeue(playing_buffer)) {
// If no buffer was available we've underrun, just push the samples and
// continue.
samples_buffer.Push(&input_buffer[frames_written * frame_size],
(num_frames - frames_written) * frame_size);
frames_written = num_frames;
continue;
}
// Successfully dequeued a new buffer.
queued_buffers--;
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{std::min<u64>(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
samples_buffer.Push(&input_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
playing_buffer.consumed = true;
}
}
std::memcpy(&last_frame[0], &input_buffer[(frames_written - 1) * frame_size], frame_size_bytes);
}
void SinkStream::ProcessAudioOutAndRender(std::span<s16> output_buffer, std::size_t num_frames) {
const std::size_t num_channels = GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
size_t frames_written{0};
size_t actual_frames_written{0};
// If we're paused or going to shut down, we don't want to consume buffers as coretiming is
// paused and we'll desync, so just play silence.
if (system.IsPaused() || system.IsShuttingDown()) {
if (system.IsShuttingDown()) {
release_cv.notify_one();
}
static constexpr std::array<s16, 6> silence{};
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &silence[0], frame_size_bytes);
}
return;
}
while (frames_written < num_frames) {
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!queue.try_dequeue(playing_buffer)) {
// If no buffer was available we've underrun, fill the remaining buffer with
// the last written frame and continue.
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &last_frame[0], frame_size_bytes);
}
frames_written = num_frames;
continue;
}
// Successfully dequeued a new buffer.
queued_buffers--;
{ std::unique_lock lk{release_mutex}; }
release_cv.notify_one();
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{std::min<u64>(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
samples_buffer.Pop(&output_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
actual_frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
playing_buffer.consumed = true;
}
}
std::memcpy(&last_frame[0], &output_buffer[(frames_written - 1) * frame_size],
frame_size_bytes);
{
std::scoped_lock lk{sample_count_lock};
last_sample_count_update_time =
Core::Timing::CyclesToUs(system.CoreTiming().GetClockTicks());
min_played_sample_count = max_played_sample_count;
max_played_sample_count += actual_frames_written;
}
}
u64 SinkStream::GetExpectedPlayedSampleCount() {
std::scoped_lock lk{sample_count_lock};
auto cur_time{Core::Timing::CyclesToUs(system.CoreTiming().GetClockTicks())};
auto time_delta{cur_time - last_sample_count_update_time};
auto exp_played_sample_count{min_played_sample_count +
(TargetSampleRate * time_delta) / std::chrono::seconds{1}};
// Add 15ms of latency in sample reporting to allow for some leeway in scheduler timings
return std::min<u64>(exp_played_sample_count, max_played_sample_count) + TargetSampleCount * 3;
}
void SinkStream::WaitFreeSpace() {
std::unique_lock lk{release_mutex};
release_cv.wait(
lk, [this]() { return queued_buffers < max_queue_size || system.IsShuttingDown(); });
}
} // namespace AudioCore::Sink